154 research outputs found

    The Use of Thin Disc Samples for the Determination of the Tear Resistance of Brittle Materials

    Get PDF
    Technical requirements of complex systems the nuclear industry is obliged to develop new types of materials and methods mechanical tests to determine their mechanical properties. The development of known and development of new methods of mechanical testing is an important task for nuclear power. It is proposed to use the test of bending small thin disk specimens simply supported along the contour, to determine the resistance of material to tensile strain. The results of computer analysis of stress-strain state and test a thin disk specimens made of brittle materials are cast iron and graphite as a possible model, and directly samples made by electro-impuls methods are presented. It is shown the effect of size of specimens on the resistance to their destruction and different character of deformation and destruction of samples of cast iron and graphite. The possibility of application of thin disc samples for the determination the resistance to tensile strain of the composite ceramics based on SiAlON with various additives Y2O3, SiC, TiN, and boron carbide B4C is confirmed

    Estimating the Brittle Strength of Nuclear Fuel Material

    Get PDF
    The development of nuclear energy involves use of promising nitride nuclear fuel in reactors of the 4th generation. This will require improving the fuel production technology as well as its test methods. For estimation of the strength of the nuclear fuel material as well and for further refinement of nuclear fuel test technology we propose to use small discoid samples, similar in shape to the elements of nuclear fuel in the context of ”Brazilian test” (compression applied to disk specimen in the median plane). We present here the results of testing small discoid specimens made of brittle materials such as cast iron and graphite (both being considered as possible model materials for the nuclear fuel). We compared these materials to nuclear fuelitself (as represented by uranium dioxide). In addition the effect of the specimen size on resistance to destruction was investigated. The type of deformation and fracture found in samples made from cast iron suggests that this material cannot be used as a model for the nuclear fuel. At the same time the results obtained in tests on samples composed of graphite ARV-1 were in good agreement with the results oftests on uranium dioxide. Using the data obtained in this study, a calculation formula for determining the strength of the nuclear fuel material based on the “Brazilian test” results is proposed

    The Mechanical Testing of Materials Using the Method of Digital Image Correlation

    Get PDF
    The mechanical testing of materials is regulated by standards, which established requirements for samples, test equipment, testing conditions and methods of processing the results. When performing tests, it is important to control the quality of the sample surface, its geometric dimensions and deviations from a predeterminedshape. Not less important stage of the testing is to control the fixing of the test specimen in the test equipment and the need to render its stress-strain state in the process of loading.Using the method of digital image correlation when conducting mechanical testing allows you to successfully control all phases of mechanical testing, from the quality of specimen production, testing equipment, to visualize the stress-strain state and its compliance with the adopted design scheme

    Fluctuation-driven capacity distribution in complex networks

    Full text link
    Maximizing robustness and minimizing cost are common objectives in the design of infrastructure networks. However, most infrastructure networks evolve and operate in a highly decentralized fashion, which may significantly impact the allocation of resources across the system. Here, we investigate this question by focusing on the relation between capacity and load in different types of real-world communication and transportation networks. We find strong empirical evidence that the actual capacity of the network elements tends to be similar to the maximum available capacity, if the cost is not strongly constraining. As more weight is given to the cost, however, the capacity approaches the load nonlinearly. In particular, all systems analyzed show larger unoccupied portions of the capacities on network elements subjected to smaller loads, which is in sharp contrast with the assumptions involved in (linear) models proposed in previous theoretical studies. We describe the observed behavior of the capacity-load relation as a function of the relative importance of the cost by using a model that optimizes capacities to cope with network traffic fluctuations. These results suggest that infrastructure systems have evolved under pressure to minimize local failures, but not necessarily global failures that can be caused by the spread of local damage through cascading processes

    siRNA-Mediated Gene Targeting in Aedes aegypti Embryos Reveals That Frazzled Regulates Vector Mosquito CNS Development

    Get PDF
    Although mosquito genome projects uncovered orthologues of many known developmental regulatory genes, extremely little is known about the development of vector mosquitoes. Here, we investigate the role of the Netrin receptor frazzled (fra) during embryonic nerve cord development of two vector mosquito species. Fra expression is detected in neurons just prior to and during axonogenesis in the embryonic ventral nerve cord of Aedes aegypti (dengue vector) and Anopheles gambiae (malaria vector). Analysis of fra function was investigated through siRNA-mediated knockdown in Ae. aegypti embryos. Confirmation of fra knockdown, which was maintained throughout embryogenesis, indicated that microinjection of siRNA is an effective method for studying gene function in Ae. aegypti embryos. Loss of fra during Ae. aegypti development results in thin and missing commissural axons. These defects are qualitatively similar to those observed in Dr. melanogaster fra null mutants. However, the Aa. aegypti knockdown phenotype is stronger and bears resemblance to the Drosophila commissureless mutant phenotype. The results of this investigation, the first targeted knockdown of a gene during vector mosquito embryogenesis, suggest that although Fra plays a critical role during development of the Ae. aegypti ventral nerve cord, mechanisms regulating embryonic commissural axon guidance have evolved in distantly related insects

    Collective magnetism at multiferroic vortex domain walls

    Full text link
    Topological defects have been playgrounds for many emergent phenomena in complex matter such as superfluids, liquid crystals, and early universe. Recently, vortex-like topological defects with six interlocked structural antiphase and ferroelectric domains merging into a vortex core were revealed in multiferroic hexagonal manganites. Numerous vortices are found to form an intriguing self-organized network. Thus, it is imperative to find out the magnetic nature of these vortices. Using cryogenic magnetic force microscopy, we discovered unprecedented alternating net moments at domain walls around vortices that can correlate over the entire vortex network in hexagonal ErMnO3 The collective nature of domain wall magnetism originates from the uncompensated Er3+ moments and the correlated organization of the vortex network. Furthermore, our proposed model indicates a fascinating phenomenon of field-controllable spin chirality. Our results demonstrate a new route to achieving magnetoelectric coupling at domain walls in single-phase multiferroics, which may be harnessed for nanoscale multifunctional devices.Comment: 18 pages, 10 figure

    Semaphorin-1a Is Required for Aedes aegypti Embryonic Nerve Cord Development

    Get PDF
    Although mosquito genome projects have uncovered orthologues of many known developmental regulatory genes, extremely little is known about mosquito development. In this study, the role of semaphorin-1a (sema1a) was investigated during vector mosquito embryonic ventral nerve cord development. Expression of sema1a and the plexin A (plexA) receptor are detected in the embryonic ventral nerve cords of Aedes aegypti (dengue vector) and Anopheles gambiae (malaria vector), suggesting that Sema1a signaling may regulate mosquito nervous system development. Analysis of sema1a function was investigated through siRNA-mediated knockdown in A. aegypti embryos. Knockdown of sema1a during A. aegypti development results in a number of nerve cord phenotypes, including thinning, breakage, and occasional fusion of the longitudinal connectives, thin or absent commissures, and general distortion of the nerve cord. Although analysis of Drosophila melanogaster sema1a loss-of-function mutants uncovered many similar phenotypes, aspects of the longitudinal phenotypes differed between D. melanogaster and A. aegypti. The results of this investigation suggest that Sema1a is required for development of the insect ventral nerve cord, but that the developmental roles of this guidance molecule have diverged in dipteran insects

    Critical behavior of the relaxation rate, the susceptibility, and a pair correlation function in the Kuramoto model on scale-free networks

    Get PDF
    We study the impact of network heterogeneity on relaxation dynamics of the Kuramoto model on uncorrelated complex networks with scale-free degree distributions. Using the Ott-Antonsen method and the annealed-network approach, we find that the critical behavior of the relaxation rate near the synchronization phase transition does not depend on network heterogeneity and critical slowing down takes place at the critical point when the second moment of the degree distribution is finite. In the case of a complete graph we obtain an explicit result for the relaxation rate when the distribution of natural frequencies is Lorentzian. We also find a response of the Kuramoto model to an external field and show that the susceptibility of the model is inversely proportional to the relaxation rate. We reveal that network heterogeneity strongly impacts a field dependence of the relaxation rate and the susceptibility when the network has a divergent fourth moment of degree distribution. We introduce a pair correlation function of phase oscillators and show that it has a sharp peak at the critical point, signaling emergence of long-range correlations. Our numerical simulations of the Kuramoto model support our analytical results.Comment: 10 pages, 4 figure

    Critical phenomena in complex networks

    Full text link
    The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, researchers have made important steps toward understanding the qualitatively new critical phenomena in complex networks. We review the results, concepts, and methods of this rapidly developing field. Here we mostly consider two closely related classes of these critical phenomena, namely structural phase transitions in the network architectures and transitions in cooperative models on networks as substrates. We also discuss systems where a network and interacting agents on it influence each other. We overview a wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, k-core percolation, phenomena near epidemic thresholds, condensation transitions, critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks. We also discuss strong finite size effects in these systems and highlight open problems and perspectives.Comment: Review article, 79 pages, 43 figures, 1 table, 508 references, extende

    Targeting the X Chromosome during Spermatogenesis Induces Y Chromosome Transmission Ratio Distortion and Early Dominant Embryo Lethality in Anopheles gambiae

    Get PDF
    We have exploited the high selectivity of the homing endonuclease I-PpoI for the X-linked Anopheles gambiae 28S ribosomal genes to selectively target X chromosome carrying spermatozoa. Our data demonstrated that in heterozygous males, the expression of I-PpoI in the testes induced a strong bias toward Y chromosome–carrying spermatozoa. Notably, these male mosquitoes also induced complete early dominant embryo lethality in crosses with wild-type females. Morphological and molecular data indicated that all spermatozoa, irrespectively of the inheritance of the transgene, carried a substantial amount of I-PpoI protein that could attack the maternally inherited chromosome X of the embryo. Besides the obvious implications for implementing vector control measures, our data demonstrated the feasibility of generating synthetic sex distorters and revealed the intriguing possibility of manipulating maternally inherited genes using wild-type sperm cells carrying engineered endonucleases
    corecore