2,142 research outputs found
Self-Similar Random Processes and Infinite-Dimensional Configuration Spaces
We discuss various infinite-dimensional configuration spaces that carry
measures quasiinvariant under compactly-supported diffeomorphisms of a manifold
M corresponding to a physical space. Such measures allow the construction of
unitary representations of the diffeomorphism group, which are important to
nonrelativistic quantum statistical physics and to the quantum theory of
extended objects in d-dimensional Euclidean space. Special attention is given
to measurable structure and topology underlying measures on generalized
configuration spaces obtained from self-similar random processes (both for d =
1 and d > 1), which describe infinite point configurations having accumulation
points
Oscillatory instabilities in d.c. biased quantum dots
We consider a `quantum dot' in the Coulomb blockade regime, subject to an
arbitrarily large source-drain voltage V. When V is small, quantum dots with
odd electron occupation display the Kondo effect, giving rise to enhanced
conductance. Here we investigate the regime where V is increased beyond the
Kondo temperature and the Kondo resonance splits into two components. It is
shown that interference between them results in spontaneous oscillations of the
current through the dot. The theory predicts the appearance of ``Shapiro
steps'' in the current-voltage characteristics of an irradiated quantum dot;
these would constitute an experimental signature of the predicted effect.Comment: Four pages with embedded figure
On the virial coefficients of nonabelian anyons
We study a system of nonabelian anyons in the lowest Landau level of a strong
magnetic field. Using diagrammatic techniques, we prove that the virial
coefficients do not depend on the statistics parameter. This is true for all
representations of all nonabelian groups for the statistics of the particles
and relies solely on the fact that the effective statistical interaction is a
traceless operator.Comment: 9 pages, 3 eps figure
Nonlinear Response of a Kondo system: Direct and Alternating Tunneling Currents
Non - equilibrium tunneling current of an Anderson impurity system subject to
both constant and alternating electric fields is studied. A time - dependent
Schrieffer - Wolff transformation maps the time - dependent Anderson
Hamiltonian onto a Kondo one. Perturbation expansion in powers of the Kondo
coupling strength is carried out up to third order, yielding a remarkably
simple analytical expression for the tunneling current. It is found that the
zero - bias anomaly is suppressed by an ac - field. Both dc and the first
harmonic are equally enhanced by the Kondo effect, while the higher harmonics
are relatively small. These results are shown to be valid also below the Kondo
temperature.Comment: 7 pages, RevTeX, 3 PS figures attached, the article has been
significantly developed: time - dependent Schrieffer - Wolff transformation
is presented in the full form, the results are applied to the change in the
direct current induced by an alternating field (2 figures are new
No familial aggregation in chronic myeloid leukemia.
To access publisher's full text version of this article. Please click on the hyperlink in Additional Links field
Resonance Kondo Tunneling through a Double Quantum Dot at Finite Bias
It is shown that the resonance Kondo tunneling through a double quantum dot
(DQD) with even occupation and singlet ground state may arise at a strong bias,
which compensates the energy of singlet/triplet excitation. Using the
renormalization group technique we derive scaling equations and calculate the
differential conductance as a function of an auxiliary dc-bias for parallel DQD
described by SO(4) symmetry. We analyze the decoherence effects associated with
the triplet/singlet relaxation in DQD and discuss the shape of differential
conductance line as a function of dc-bias and temperature.Comment: 11 pages, 6 eps figures include
Assessing the adverse effects of a mixture of AMD and sewage effluent on a sub-tropical dam situated in a nature conservation area using a modified pollution index
Currently water resources in nature conservation areas are under severe pressure due to external drivers of anthropogenic pollution. There is a lack of monitoring tools to determine water quality status of dams situated in nature reserves receiving a mixture of pollutants over space and time. The present study was conducted over a 12-month period with the aim of applying a modified pollution index (PILD) to determine the water quality and phytoplankton status of the Loskop Dam situated in the Loskop nature reserve, South Africa. From the data generated in the current study, it was evident that the PILD effectively determined nutrient enrichment and heavy metal pollution in the dam. Furthermore, the study showed that the most pollution tolerant phytoplankton species was the diatom Melosira varians followed by the dinoflagellate Ceratuim hirundinella and the cyanobacteria Microcystis aeruginosa. Chemical variables during the sampling period that exceeded the limits of the South African, Canadian, Australia and New Zealand guideline levels were Zn, TP, Cl, Fe, Mn and NH4. The occurrence of concentrations of Cl above the target water quality range for aquatic ecosystems (5 µgl−1) over the entire sampling period, may have been related to point source sewage pollution in the upper catchment. The PILD showed poor water quality conditions during the months of September and October during the dam’s destratification (lake overturn)
Kondo effect in systems with dynamical symmetries
This paper is devoted to a systematic exposure of the Kondo physics in
quantum dots for which the low energy spin excitations consist of a few
different spin multiplets . Under certain conditions (to be
explained below) some of the lowest energy levels are nearly
degenerate. The dot in its ground state cannot then be regarded as a simple
quantum top in the sense that beside its spin operator other dot (vector)
operators are needed (in order to fully determine its quantum
states), which have non-zero matrix elements between states of different spin
multiplets . These "Runge-Lenz"
operators do not appear in the isolated dot-Hamiltonian (so in some sense they
are "hidden"). Yet, they are exposed when tunneling between dot and leads is
switched on. The effective spin Hamiltonian which couples the metallic electron
spin with the operators of the dot then contains new exchange terms,
beside the ubiquitous ones . The operators and generate a
dynamical group (usually SO(n)). Remarkably, the value of can be controlled
by gate voltages, indicating that abstract concepts such as dynamical symmetry
groups are experimentally realizable. Moreover, when an external magnetic field
is applied then, under favorable circumstances, the exchange interaction
involves solely the Runge-Lenz operators and the corresponding
dynamical symmetry group is SU(n). For example, the celebrated group SU(3) is
realized in triple quantum dot with four electrons.Comment: 24 two-column page
Using penetration depth for phase matching in photonic crystal waveguides
A new method of design for the phase-matching in waveguides is suggested. The approach is based on utilizing the concept of the penetration depth of light into the waveguide walls. The lateral components of wavevectors are employed to adjust the phase-matching condition in the propagation direction. The method is demonstrated in two systems: one using single and the other using double photonic-crystal mirrors
- …