758 research outputs found
On the Extra Mode and Inconsistency of Horava Gravity
We address the consistency of Horava's proposal for a theory of quantum
gravity from the low-energy perspective. We uncover the additional scalar
degree of freedom arising from the explicit breaking of the general covariance
and study its properties. The analysis is performed both in the original
formulation of the theory and in the Stueckelberg picture. A peculiarity of the
new mode is that it satisfies an equation of motion that is of first order in
time derivatives. At linear level the mode is manifest only around spatially
inhomogeneous and time-dependent backgrounds. We find two serious problems
associated with this mode. First, the mode develops very fast exponential
instabilities at short distances. Second, it becomes strongly coupled at an
extremely low cutoff scale. We also discuss the "projectable" version of
Horava's proposal and argue that this version can be understood as a certain
limit of the ghost condensate model. The theory is still problematic since the
additional field generically forms caustics and, again, has a very low strong
coupling scale. We clarify some subtleties that arise in the application of the
Stueckelberg formalism to Horava's model due to its non-relativistic nature.Comment: Discussion expanded; a figure added; accepted to JHE
Magnetized Tolman-Bondi Collapse
We investigate the gravitational implosion of magnetized matter by studying
the inhomogeneous collapse of a weakly magnetized Tolman-Bondi spacetime. The
role of the field is analyzed by looking at the convergence of neighboring
particle worldlines. In particular, we identify the magnetically related
stresses in the Raychaudhuri equation and use the Tolman-Bondi metric to
evaluate their impact on the collapsing dust. We find that, despite the low
energy level of the field, the Lorentz force dominates the advanced stages of
the collapse, leading to a strongly anisotropic contraction. In addition, of
all the magnetic stresses, those that resist the collapse are found to grow
faster.Comment: 6 pages, RevTex; v2: physical interpretation of the results slightly
changed, references added, version accepted in Phys. Rev. D (2006
Mixed-symmetry massive fields in AdS(5)
Free mixed-symmetry arbitrary spin massive bosonic and fermionic fields
propagating in AdS(5) are investigated. Using the light-cone formulation of
relativistic dynamics we study bosonic and fermionic fields on an equal
footing. Light-cone gauge actions for such fields are constructed. Various
limits of the actions are discussed.Comment: v3: 24 pages, LaTeX-2e; typos corrected, footnote 7 and 2 references
added, published in Class. Quantum Gra
A Transfer Matrix Method for Resonances in Randall-Sundrum Models
In this paper we discuss in detail a numerical method to study resonances in
membranes generated by domain walls in Randall-Sundrum-like scenarios. It is
based on similar works to understand the quantum mechanics of electrons subject
to the potential barriers that exist in heterostructures in semiconductors.
This method was used recently to study resonances of a three form field and
lately generalized to arbitrary forms. We apply it to a lot of important
models, namely those that contain the Gauge, Gravity and Spinor fields. In many
cases we find a rich structure of resonances which depends on the parameters
involved.Comment: 25 pages, 17 figure
Domain wall brane in squared curvature gravity
We suggest a thick braneworld model in the squared curvature gravity theory.
Despite the appearance of higher order derivatives, the localization of gravity
and various bulk matter fields is shown to be possible. The existence of the
normalizable gravitational zero mode indicates that our four-dimensional
gravity is reproduced. In order to localize the chiral fermions on the brane,
two types of coupling between the fermions and the brane forming scalar is
introduced. The first coupling leads us to a Schr\"odinger equation with a
volcano potential, and the other a P\"oschl-Teller potential. In both cases,
the zero mode exists only for the left-hand fermions. Several massive KK states
of the fermions can be trapped on the brane, either as resonant states or as
bound states.Comment: 18 pages, 5 figures and 1 table, references added, improved version
to be published in JHE
Caustic avoidance in Horava-Lifshitz gravity
There are at least four versions of Horava-Lishitz gravity in the literature.
We consider the version without the detailed balance condition with the
projectability condition and address one aspect of the theory: avoidance of
caustics for constant time hypersurfaces. We show that there is no caustic with
plane symmetry in the absence of matter source if \lambda\ne 1. If \lambda=1 is
a stable IR fixed point of the renormalization group flow then \lambda is
expected to deviate from 1 near would-be caustics, where the extrinsic
curvature increases and high-energy corrections become important. Therefore,
the absence of caustics with \lambda\ne 1 implies that caustics cannot form
with this symmetry in the absence of matter source. We argue that inclusion of
matter source will not change the conclusion. We also argue that caustics with
codimension higher than one will not form because of repulsive gravity
generated by nonlinear higher curvature terms. These arguments support our
conjecture that there is no caustic for constant time hypersurfaces. Finally,
we discuss implications to the recently proposed scenario of ``dark matter as
integration constant''.Comment: 19 pages; extended to general z \geq 3, typos corrected (v2); version
accepted for publication in JCAP (v3
¿Qué sucede en España con la movilidad social cuando se tiene en cuenta el género y el origen inmigrante?
Background of INCASI Project H2020-MSCA-RISE-2015 GA 691004. WP1: CompilationSeminario organizado por el Grupo de Estudios sobre Migraciones, Familias y PolĂticas PĂşblicas y por el Grupo sobre Desigualdad y Movilidad Social del Instituto de Investigaciones Gino Germani, celebrado en la Universidad de Buenos Aires el 15 de diciembre de 201
Horava-Lifshitz Holography
We derive the detailed balance condition as a solution to the Hamilton-Jacobi
equation in the Horava-Lifshitz gravity. This result leads us to propose the
existence of the d-dimensional quantum field theory on the future boundary of
the (d+1)-dimensional Horava-Lifshitz gravity from the viewpoint of the
holographic renormalization group. We also obtain a Ricci flow equation of the
boundary theory as the holographic RG flow, which is the Hamilton equation in
the bulk gravity, by tuning parameters in the theory.Comment: 7 page
Particle Kinematics in Horava-Lifshitz Gravity
We study the deformed kinematics of point particles in the Horava theory of
gravity. This is achieved by considering particles as the optical limit of
fields with a generalized Klein-Gordon action. We derive the deformed geodesic
equation and study in detail the cases of flat and spherically symmetric
(Schwarzschild-like) spacetimes. As the theory is not invariant under local
Lorenz transformations, deviations from standard kinematics become evident even
for flat manifolds, supporting superluminal as well as massive luminal
particles. These deviations from standard behavior could be used for
experimental tests of this modified theory of gravity.Comment: Added references, corrected a typing erro
Perturbative instabilities in Horava gravity
We investigate the scalar and tensor perturbations in Horava gravity, with
and without detailed balance, around a flat background. Once both types of
perturbations are taken into account, it is revealed that the theory is plagued
by ghost-like scalar instabilities in the range of parameters which would
render it power-counting renormalizable, that cannot be overcome by simple
tricks such as analytic continuation. Implementing a consistent flow between
the UV and IR limits seems thus more challenging than initially presumed,
regardless of whether the theory approaches General Relativity at low energies
or not. Even in the phenomenologically viable parameter space, the tensor
sector leads to additional potential problems, such as fine-tunings and
super-luminal propagation.Comment: 21 pages, version published at Class. Quant. Gra
- …