22 research outputs found

    The Effect of the CO32- to Ca2+ Ion activity ratio on calcite precipitation kinetics and Sr2+ partitioning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A proposed strategy for immobilizing trace metals in the subsurface is to stimulate calcium carbonate precipitation and incorporate contaminants by co-precipitation. Such an approach will require injecting chemical amendments into the subsurface to generate supersaturated conditions that promote mineral precipitation. However, the formation of reactant mixing zones will create gradients in both the saturation state and ion activity ratios (i.e., <inline-formula><m:math name="1467-4866-13-1-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:msub><m:mrow><m:mi>O</m:mi></m:mrow><m:mrow><m:mn>3</m:mn></m:mrow></m:msub></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">-</m:mo></m:mrow></m:msup></m:mrow></m:msub><m:mo class="MathClass-bin">/</m:mo><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">+</m:mo></m:mrow></m:msup></m:mrow></m:msub></m:math></inline-formula>). To better understand the effect of ion activity ratios on CaCO<sub>3 </sub>precipitation kinetics and Sr<sup>2+ </sup>co-precipitation, experiments were conducted under constant composition conditions where the supersaturation state (Ω) for calcite was held constant at 9.4, but the ion activity ratio <inline-formula><m:math name="1467-4866-13-1-i2" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:mrow><m:mo class="MathClass-open">(</m:mo><m:mrow><m:mi>r</m:mi><m:mo class="MathClass-rel">=</m:mo><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:msub><m:mrow><m:mi>O</m:mi></m:mrow><m:mrow><m:mn>3</m:mn></m:mrow></m:msub></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">-</m:mo></m:mrow></m:msup></m:mrow></m:msub><m:mo class="MathClass-bin">/</m:mo><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">+</m:mo></m:mrow></m:msup></m:mrow></m:msub></m:mrow><m:mo class="MathClass-close">)</m:mo></m:mrow></m:math></inline-formula> was varied between 0.0032 and 4.15.</p> <p>Results</p> <p>Calcite was the only phase observed, by XRD, at the end of the experiments. Precipitation rates increased from 41.3 ± 3.4 μmol m<sup>-2 </sup>min<sup>-1 </sup>at <it>r = </it>0.0315 to a maximum rate of 74.5 ± 4.8 μmol m<sup>-2 </sup>min<sup>-1 </sup>at <it>r = </it>0.306 followed by a decrease to 46.3 ± 9.6 μmol m<sup>-2 </sup>min<sup>-1 </sup>at <it>r </it>= 1.822. The trend was simulated using a simple mass transfer model for solute uptake at the calcite surface. However, precipitation rates at fixed saturation states also evolved with time. Precipitation rates accelerated for low <it>r </it>values but slowed for high <it>r </it>values. These trends may be related to changes in effective reactive surface area. The <inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" name="1467-4866-13-1-i1"><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:msub><m:mrow><m:mi>O</m:mi></m:mrow><m:mrow><m:mn>3</m:mn></m:mrow></m:msub></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">-</m:mo></m:mrow></m:msup></m:mrow></m:msub><m:mo class="MathClass-bin">/</m:mo><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">+</m:mo></m:mrow></m:msup></m:mrow></m:msub></m:math></inline-formula> ratios did not affect the distribution coefficient for Sr in calcite (D<sup>P</sup><sub>Sr</sub><sup>2+</sup>), apart from the indirect effect associated with the established positive correlation between D<sup>P</sup><sub>Sr</sub><sup>2+ </sup>and calcite precipitation rate.</p> <p>Conclusion</p> <p>At a constant supersaturation state (Ω = 9.4), varying the ion activity ratio affects the calcite precipitation rate. This behavior is not predicted by affinity-based rate models. Furthermore, at the highest ion ratio tested, no precipitation was observed, while at the lowest ion ratio precipitation occurred immediately and valid rate measurements could not be made. The maximum measured precipitation rate was 2-fold greater than the minima, and occurred at a carbonate to calcium ion activity ratio of 0.306. These findings have implications for predicting the progress and cost of remediation operations involving enhanced calcite precipitation where mineral precipitation rates, and the spatial/temporal distribution of those rates, can have significant impacts on the mobility of contaminants.</p

    War and health care services utilization for chronic diseases in rural and semiurban areas of Tigray, Ethiopia

    Get PDF
    Importance The war in Tigray, Ethiopia, has disrupted the health care system of the region. However, its association with health care services disruption for chronic diseases has not been well documented. Objective To assess the association of the war with the utilization of health care services for patients with chronic diseases. Design, Setting, and Participants Of 135 primary health care facilities, a registry-based cross-sectional study was conducted on 44 rural and semiurban facilities of Tigray. Data on health services utilization were extracted for patients with tuberculosis, HIV, diabetes, hypertension, and psychiatric disorders in the prewar period (September 1, to October 31, 2020) and during the first phase of the war period (November 4, 2020, to June 30, 2021). Main Outcomes and Measures Records on the number of follow-up, laboratory tests, and patients undergoing treatment of the aforementioned chronic diseases were counted during the prewar and war periods. Results Of 4645 records of patients with chronic diseases undergoing treatment during the prewar period, 998 records (21%) indicated having treatment during the war period. Compared with the prewar period, 59 of 180 individuals (33%; 95% CI, 26%-40%) had tuberculosis, 522 of 2211 (24%; 95% CI, 22%-26%) had HIV, 228 of 1195 (19%; 95% CI, 17%-21%) had hypertension, 123 of 632 (20%; 95% CI, 16%-22%) had psychiatric disorders, and 66 of 427 (15%; 95% CI, 12%-18%) had type 2 diabetes records, which revealed continued treatment during the war period. Of 174 records of patients with type 1 diabetes in the prewar period, at 2 to 3 months into the war, the numbers dropped to 10 with 94% decline compared with prewar observations. Conclusions and Relevance This study found that the war in Tigray has resulted in critical health care service disruption and high loss to follow-up for patients with chronic disease, likely leading to increased morbidity and mortality. Local, national, and global policymakers must understand the extent and impact of the service disruption and urge their efforts toward restoration of those services
    corecore