10 research outputs found

    Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras

    Full text link
    In this paper we construct ternary qq-Virasoro-Witt algebras which qq-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1,1)su(1,1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary qq-Virasoro-Witt algebras constructed in this article are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield Hom-Nambu Lie algebra structure for qq-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary qq-Virasoro-Witt algebras we construct, carry a structure of ternary Hom-Nambu-Lie algebra for all values of the involved parameters

    The homotopy theory of simplicial props

    Full text link
    The category of (colored) props is an enhancement of the category of colored operads, and thus of the category of small categories. In this paper, the second in a series on "higher props," we show that the category of all small colored simplicial props admits a cofibrantly generated model category structure. With this model structure, the forgetful functor from props to operads is a right Quillen functor.Comment: Final version, to appear in Israel J. Mat

    Derived coisotropic structures I: affine case

    Get PDF
    We define and study coisotropic structures on morphisms of commutative dg algebras in the context of shifted Poisson geometry, i.e. PnP_n-algebras. Roughly speaking, a coisotropic morphism is given by a Pn+1P_{n+1}-algebra acting on a PnP_n-algebra. One of our main results is an identification of the space of such coisotropic structures with the space of Maurer--Cartan elements in a certain dg Lie algebra of relative polyvector fields. To achieve this goal, we construct a cofibrant replacement of the operad controlling coisotropic morphisms by analogy with the Swiss-cheese operad which can be of independent interest. Finally, we show that morphisms of shifted Poisson algebras are identified with coisotropic structures on their graph.Comment: 49 pages. v2: many proofs rewritten and the paper is split into two part

    Deformation-obstruction theory for diagrams of algebras and applications to geometry

    No full text
    Let XX be a smooth complex algebraic variety and let Coh(X)\operatorname{Coh} (X) denote its Abelian category of coherent sheaves. By the work of W. Lowen and M. Van den Bergh, it is known that the deformation theory of Coh(X)\operatorname{Coh} (X) as an Abelian category can be seen to be controlled by the Gerstenhaber-Schack complex associated to the restriction of the structure sheaf OXU\mathcal O_X \vert_{\mathfrak U} to a cover of affine open sets. We construct an explicit LL_\infty algebra structure on the Gerstenhaber-Schack complex controlling the higher deformation theory of OXU\mathcal O_X \vert_{\mathfrak U} in case XX can be covered by two acyclic open sets, giving an explicit deformation-obstruction calculus for such deformations. Deformations of complex structures and deformation quantizations of XX are recovered as degenerate cases, as is shown by means of concrete examples
    corecore