36 research outputs found
Model order reduction for neutral systems by moment matching
published_or_final_versio
Sufu and Gli3 repressor mediate the temporal basal-to-apical progression of hair cell differentiation in mammalian cochleae
Poster presentation - Theme 3: Development & stem cellsThe Sonic Hedgehog pathway plays important roles in mammalian inner ear development. Mutations of Shh, Smo and Gli3 lead to severe defects in mouse inner ear morphogenesis. However, knockout of Gli2 does not affect inner ear morphology or cochlear hair cell differentiation, suggesting that the Gli repressor function may be required for Hedgehog signaling during inner ear development. Sufu is a negative regulator of Hedgehog signaling and it functions to repress Gli activator and enhance Gli repressor ...postprin
Level-set-based inverse lithography for mask synthesis using the conjugate gradient and an optimal time step
published_or_final_versio
Ultrafast Laser-Scanning Time-Stretch Imaging at Visible Wavelengths
published_or_final_versio
Anti-fouling graphene-based membranes for effective water desalination
© 2018 The Author(s). The inability of membranes to handle a wide spectrum of pollutants is an important unsolved problem for water treatment. Here we demonstrate water desalination via a membrane distillation process using a graphene membrane where water permeation is enabled by nanochannels of multilayer, mismatched, partially overlapping graphene grains. Graphene films derived from renewable oil exhibit significantly superior retention of water vapour flux and salt rejection rates, and a superior antifouling capability under a mixture of saline water containing contaminants such as oils and surfactants, compared to commercial distillation membranes. Moreover, real-world applicability of our membrane is demonstrated by processing sea water from Sydney Harbour over 72 h with macroscale membrane size of 4 cm 2 , processing ~0.5 L per day. Numerical simulations show that the channels between the mismatched grains serve as an effective water permeation route. Our research will pave the way for large-scale graphene-based antifouling membranes for diverse water treatment applications