1,114 research outputs found

    Probing Supersymmetric Flavor Models with ϵ/ϵ\epsilon'/\epsilon

    Full text link
    We discuss the supersymmetric contribution to ϵ/ϵ\epsilon'/\epsilon in various supersymmetric flavor models. We find that in alignment models the supersymmetric contribution could be significant while in heavy squark models it is expected to be small. The situation is particularly interesting in models that solve the flavor problems by either of the above mechanisms and the remaining CP problems by means of approximate CP, that is, all CP violating phases are small. In such models, the standard model contributions cannot account for ϵ/ϵ\epsilon'/\epsilon and a failure of the supersymmetric contributions to do so would exclude the model. In models of alignment and approximate CP, the supersymmetric contributions can account for ϵ/ϵ\epsilon'/\epsilon only if both the supersymmetric model parameters and the hadronic parameters assume rather extreme values. Such models are then strongly disfavored by the ϵ/ϵ\epsilon'/\epsilon measurements. Models of heavy squarks and approximate CP are excluded.Comment: 16 pages, harvmac. v2: We added a discussion of the intriguing implications that would follow if a recent lattice result is confirme

    Coseismic horizontal slip revealed by sheared clastic dikes in the Dead Sea Basin

    Get PDF
    Peer reviewedPostprin

    Statistical determination of the length dependence of high-order polarization mode dispersion

    Get PDF
    We describe a method of characterizing high-order polarization mode dispersion (PMD).Using a new expansion to approximate the Jones matrix of a polarization-dispersive medium, we study the length dependence of high-order PMD to the fourth order. A simple rule for the asymptotic behavior of PMD for short and long fibers is found. It is also shown that, in long fibers (~1000 km), at 40 Gbits/s the third- and fourth-order PMD may become comparable to the second-order PMD

    On the number of rectangulations of a planar point set

    Get PDF
    AbstractWe investigate the number of different ways in which a rectangle containing a set of n noncorectilinear points can be partitioned into smaller rectangles by n (nonintersecting) segments, such that every point lies on a segment. We show that when the relative order of the points forms a separable permutation, the number of rectangulations is exactly the (n+1)st Baxter number. We also show that no matter what the order of the points is, the number of guillotine rectangulations is always the nth Schröder number, and the total number of rectangulations is O(20n/n4)

    B-factory Signals for a Warped Extra Dimension

    Full text link
    We study predictions for B-physics in a class of models, recently introduced, with a non-supersymmetric warped extra dimension. In these models few (3\sim 3) TeV Kaluza-Klein masses are consistent with electroweak data due to bulk custodial symmetry. Furthermore, there is an analog of GIM mechanism which is violated by the heavy top quark (just as in SM) leading to striking signals at BB-factories:(i) New Physics (NP) contributions to ΔF=2\Delta F= 2 transitions are comparable to SM. This implies that, within this NP framework, the success of SM unitarity triangle fit is a ``coincidence'' Thus, clean extractions of unitarity angles via e.g. Bππ,ρπ,ρρ,DKB \to \pi \pi,\rho \pi, \rho \rho, DK are likely to be affected, in addition to O(1) deviation from SM prediction in BsB_s mixing. (ii) O(1) deviation from SM predictions for BXsl+lB \to X_s l^+ l^- in rate as well as in forward-backward and direct CP asymmetry. (iii) Large mixing-induced CP asymmetry in radiative B decays, wherein the SM unamibgously predicts very small asymmetries. Also with KK masses 3 TeV or less, and with anarchic Yukawa masses, contributions to electric dipole moments of the neutron are roughly 20 times larger than the current experimental bound so that this framework has a "CP problem".Comment: On further consideration, we found that our framework does have a "CP problem" in that though contributions to neutron's electric dipole moment from CKM-like phases vanish at the one-loop level, sizeable contributions are induced by Majorana-like phases. Last sentence of abstract is changed along with para #3 and 4 on page

    Colordag: An Incentive-Compatible Blockchain

    Full text link
    We present Colordag, a blockchain protocol where following the prescribed strategy is, with high probability, a best response as long as all miners have less than 1/2 of the mining power. We prove the correctness of Colordag even if there is an extremely powerful adversary who knows future actions of the scheduler: specifically, when agents will generate blocks and when messages will arrive. The state-of-the-art protocol, Fruitchain, is an epsilon-Nash equilibrium as long as all miners have less than 1/2 of the mining power. However, there is a simple deviation that guarantees that deviators are never worse off than they would be by following Fruitchain, and can sometimes do better. Thus, agents are motivated to deviate. Colordag implements a solution concept that we call epsilon-sure Nash equilibrium and does not suffer from this problem. Because it is an epsilon-sure Nash equilibrium, Colordag is an epsilon Nash equilibrium and with probability (1 - epsilon) is a best response.Comment: To be published in DISC 202

    BCC vs. HCP - The Effect of Crystal Symmetry on the High Temperature Mobility of Solid 4^4He

    Full text link
    We report results of torsional oscillator (TO) experiments on solid 4^4He at temperatures above 1K. We have previously found that single crystals, once disordered, show some mobility (decoupled mass) even at these rather high temperatures. The decoupled mass fraction with single crystals is typically 20- 30%. In the present work we performed similar measurements on polycrystalline solid samples. The decoupled mass with polycrystals is much smaller, \sim 1%, similar to what is observed by other groups. In particular, we compared the properties of samples grown with the TO's rotation axis at different orientations with respect to gravity. We found that the decoupled mass fraction of bcc samples is independent of the angle between the rotation axis and gravity. In contrast, hcp samples showed a significant difference in the fraction of decoupled mass as the angle between the rotation axis and gravity was varied between zero and 85 degrees. Dislocation dynamics in the solid offers one possible explanation of this anisotropy.Comment: 10 pages, 5 figures, to appear in Journal of Low Temperature Physics - special issue on Supersolidit

    Fairness and Efficiency in DAG-based Cryptocurrencies

    Full text link
    Bitcoin is a decentralised digital currency that serves as an alternative to existing transaction systems based on an external central authority for security. Although Bitcoin has many desirable properties, one of its fundamental shortcomings is its inability to process transactions at high rates. To address this challenge, many subsequent protocols either modify the rules of block acceptance (longest chain rule) and reward, or alter the graphical structure of the public ledger from a tree to a directed acyclic graph (DAG). Motivated by these approaches, we introduce a new general framework that captures ledger growth for a large class of DAG-based implementations. With this in hand, and by assuming honest miner behaviour, we (experimentally) explore how different DAG-based protocols perform in terms of fairness, i.e., if the block reward of a miner is proportional to their hash power, as well as efficiency, i.e. what proportion of user transactions a ledger deems valid after a certain length of time. Our results demonstrate fundamental structural limits on how well DAG-based ledger protocols cope with a high transaction load. More specifically, we show that even in a scenario where every miner on the system is honest in terms of when they publish blocks, what they point to, and what transactions each block contains, fairness and efficiency of the ledger can break down at specific hash rates if miners have differing levels of connectivity to the P2P network sustaining the protocol
    corecore