812 research outputs found

    Coulomb breakup effects on the elastic cross section of 6^6He+209^{209}Bi scattering near Coulomb barrier energies

    Full text link
    We accurately analyze the 6^6He+209^{209}Bi scattering at 19 and 22.5 MeV near the Coulomb barrier energy, using the continuum-discretized coupled-channels method (CDCC) based on the nn+nn+4^4He+209^{209}Bi four-body model. The three-body breakup continuum of 6^6He is discretized by diagonalizing the internal Hamiltonian of 6^6He in a space spanned by the Gaussian basis functions. The calculated elastic and total reaction cross sections are in good agreement with the experimental data, while the CDCC calculation based on the di-neutron model of 6^6He, i.e., the 2n^2n+4^{4}He+209^{209}Bi three-body model, does not reproduce the data.Comment: 5 pages, 5 figures, uses REVTeX 4, submitted to Phys. Rev.

    Strongly coupled phase transition in ferroelectric/correlated electron oxide heterostructures

    Full text link
    We fabricated ultrathin ferroelectric/correlated electron oxide heterostructures composed of the ferroelectric Pb(Zr0.2Ti0.8)O3 and the correlated electron oxide (CEO) La0.8Sr0.2MnO3 on SrTiO3 substrates by pulsed laser epitaxy. The hole accumulation in the ultrathin CEO layer was substantially modified by heterostructuring with the ferroelectric layer, resulting in an insulator-metal transition. In particular, our thickness dependent study showed that drastic changes in transport and magnetic properties were strongly coupled to the modulation of charge carriers by ferroelectric field effect, which was confined to the vicinity of the interface. Thus, our results provide crucial evidence that strong ferroelectric field effect control can be achieved in ultrathin (10 nm) heterostructures, yielding at least a 100,000-fold change in resistivity

    Near-infrared Brightness of the Galilean Satellites Eclipsed in Jovian Shadow: A New Technique to Investigate Jovian Upper Atmosphere

    Get PDF
    We have discovered that Europa, Ganymede and Callisto are bright around 1.5 {\mu}m even when not directly lit by sunlight, based on observations from the Hubble Space Telescope and the Subaru Telescope. The observations were conducted with non-sidereal tracking on Jupiter outside of the field of view to reduce the stray light subtraction uncertainty due to the close proximity of Jupiter. Their eclipsed luminosity was 10−610^{-6}-10−710^{-7} of their uneclipsed brightness, which is low enough that this phenomenon has been undiscovered until now. In addition, Europa in eclipse was <1/10 of the others at 1.5 {\mu}m, a potential clue to the origin of the source of luminosity. Likewise, Ganymede observations were attempted at 3.6 {\mu}m by the Spitzer Space Telescope but it was not detected, suggesting a significant wavelength dependence. The reason why they are luminous even when in the Jovian shadow is still unknown, but forward-scattered sunlight by haze in the Jovian upper atmosphere is proposed as the most plausible candidate. If this is the case, observations of these Galilean satellites while eclipsed by the Jovian shadow provide us a new technique to investigate Jovian atmospheric composition, and investigating the transmission spectrum of Jupiter by this method is important for investigating the atmosphere of extrasolar giant planets by transit spectroscopy.Comment: 7 pages, 3 figures, accepted to Ap

    First-Principles Study on Electron Conduction in Sodium Nanowire

    Full text link
    We present detailed first-principles calculations of the electron-conduction properties of a three-sodium-atom nanowire suspended between semi-infinite crystalline Na(001) electrodes during its elongation. Our investigations reveal that the conductance is ~1 G0 before the nanowire breaks and only one channel with the characteristic of the 3s3s orbital of the center atom in the nanowire contributes to the electron conduction. Moreover, the channel fully opens around the Fermi level, and the behavior of the channel-current density is insensitive to the structural deformation of the nanowire. These results verify that the conductance trace as a function of the electrode spacing exhibits a flat plateau at ~1 G0 during elongation.Comment: 8 pages, 5 figure

    Evidence for a universal length scale of dynamic charge inhomogeneity in cuprate superconductors

    Full text link
    Time-resolved optical experiments can give unique information on the characteristic length scales of dynamic charge inhomogeneity on femtosecond timescales. From data on the effective quasiparticle relaxation time &#61556;r in La2-xSrxCuO4 and Nd2-xCexCuO4 we derive the temperature- and doping- dependence of the intrinsic phonon escape length le, which, under certain circumstances, can be shown to be a direct measure of charge inhomogeneity. Remarkably, a common feature of both p and n-type cuprates - which has important consequences for superconductivity - is that as T &#61614; Tc from above, the escape length approaches the zero-temperature superconducting coherence length, le &#61614; &#61560;s(0). In close vicinity of Tc, le appears to follow the critical behaviour of the Ginsburg-Landau coherence length, &#61560;GL(T). In the normal state le is found to be in excellent agreement with the mean free path lm obtained from the resistivity data. The data on le also agree well with the data on structural coherence lengths ls obtained from neutron scattering experiments, implying the existence of complex intrinsic textures on different length scales which may have a profound effect on the functional properties of these materials.Comment: To appear in Physical Review Letter
    • …
    corecore