797 research outputs found

    Dephasing at Low Temperatures

    Full text link
    We discuss the significance and the calculation of dephasing at low temperatures. The particle is moving diffusively due to a static disorder configuration, while the interference between classical paths is suppressed due to the interaction with a dynamical environment. At high temperatures we may use the `white noise approximation' (WNA), while at low temperatures we distinguish the contribution of `zero point fluctuations' (ZPF) from the `thermal noise contribution' (TNC). We study the limitations of the above semiclassical approach and suggest the required modifications. In particular we find that the ZPF contribution becomes irrelevant for thermal motion.Comment: 4 pages, 1 figure, clearer presentatio

    Quantal Brownian Motion - Dephasing and Dissipation

    Full text link
    We analyze quantal Brownian motion in dd dimensions using the unified model for diffusion localization and dissipation, and Feynman-Vernon formalism. At high temperatures the propagator possess a Markovian property and we can write down an equivalent Master equation. Unlike the case of the Zwanzig-Caldeira-Leggett model, genuine quantum mechanical effects manifest themselves due to the disordered nature of the environment. Using Wigner picture of the dynamics we distinguish between two different mechanisms for destruction of coherence. The analysis of dephasing is extended to the low temperature regime by using a semiclassical strategy. Various results are derived for ballistic, chaotic, diffusive, both ergodic and non-ergodic motion. We also analyze loss of coherence at the limit of zero temperature and clarify the limitations of the semiclassical approach. The condition for having coherent effect due to scattering by low-frequency fluctuations is also pointed out. It is interesting that the dephasing rate can be either larger or smaller than the dissipation rate, depending on the physical circumstances.Comment: LaTex, 23 pages, 4 figures, published vesio

    Rate of energy absorption by a closed ballistic ring

    Full text link
    We make a distinction between the spectroscopic and the mesoscopic conductance of closed systems. We show that the latter is not simply related to the Landauer conductance of the corresponding open system. A new ingredient in the theory is related to the non-universal structure of the perturbation matrix which is generic for quantum chaotic systems. These structures may created bottlenecks that suppress the diffusion in energy space, and hence the rate of energy absorption. The resulting effect is not merely quantitative: For a ring-dot system we find that a smaller Landauer conductance implies a smaller spectroscopic conductance, while the mesoscopic conductance increases. Our considerations open the way towards a realistic theory of dissipation in closed mesoscopic ballistic devices.Comment: 18 pages, 5 figures, published version with updated ref

    Renormalization of the dephasing by zero point fluctuations

    Full text link
    We study the role of zero-point-fluctuations (ZPF) in dephasing at low temperature. Unlike the Caldeira-Leggett model where the interaction is with an homogeneous fluctuating field of force, here we consider the effect of short range scattering by localized bath modes. We find that in presence of ZPF the inelastic cross-section gets renormalized. Thus indirectly ZPF might contribute to the dephasing at low temperature.Comment: 8 pages, 8 figures, improved versio

    Electric fields in plasmas under pulsed currents

    Full text link
    Electric fields in a plasma that conducts a high-current pulse are measured as a function of time and space. The experiment is performed using a coaxial configuration, in which a current rising to 160 kA in 100 ns is conducted through a plasma that prefills the region between two coaxial electrodes. The electric field is determined using laser spectroscopy and line-shape analysis. Plasma doping allows for 3D spatially resolved measurements. The measured peak magnitude and propagation velocity of the electric field is found to match those of the Hall electric field, inferred from the magnetic-field front propagation measured previously.Comment: 13 pages, 13 figures, submitted to PR

    Quantum pumping and dissipation: from closed to open systems

    Full text link
    Current can be pumped through a closed system by changing parameters (or fields) in time. The Kubo formula allows to distinguish between dissipative and non-dissipative contributions to the current. We obtain a Green function expression and an SS matrix formula for the associated terms in the generalized conductance matrix: the "geometric magnetism" term that corresponds to adiabatic transport; and the "Fermi golden rule" term which is responsible to the irreversible absorption of energy. We explain the subtle limit of an infinite system, and demonstrate the consistency with the formulas by Landauer and Buttiker, Pretre and Thomas. We also discuss the generalization of the fluctuation-dissipation relation, and the implications of the Onsager reciprocity.Comment: 4 page paper, 1 figure (published version) + 2 page appendi

    Inferences Training Affects Memory, Rumination, and Mood

    Get PDF
    Making negative inferences for negative events, ruminating about them, and retrieving negative aspects of memories have all been associated with depression. However, the causal mechanisms that link negative inferences to negative mood and the interplay between inferences, rumination, and memory have not been explored. In the current study, we used a cognitive-bias modification (CBM) procedure to train causal inferences and assessed training effects on ruminative thinking, memory, and negative mood among people with varying levels of depression. Training had immediate effects on negative mood and rumination but not after recall of a negative autobiographical memory. Note that training affected memory: Participants falsely recalled inferences presented during the training in a training-congruent manner. Moreover, among participants with high levels of depression, training also affected causal inferences they made for an autobiographical memory retrieved after training. Our findings shed light on negative cognitive cycles that may contribute to depression
    corecore