66,955 research outputs found

    A model of a dual-core matter-wave soliton laser

    Full text link
    We propose a system which can generate a periodic array of solitary-wave pulses from a finite reservoir of coherent Bose-Einstein condensate (BEC). The system is built as a set of two parallel quasi-one-dimensional traps (the reservoir proper and a pulse-generating cavity), which are linearly coupled by the tunneling of atoms. The scattering length is tuned to be negative and small in the absolute value in the cavity, and still smaller but positive in the reservoir. Additionally, a parabolic potential profile is created around the center of the cavity. Both edges of the reservoir and one edge of the cavity are impenetrable. Solitons are released through the other cavity's edge, which is semi-transparent. Two different regimes of the intrinsic operation of the laser are identified: circulations of a narrow wave-function pulse in the cavity, and oscillations of a broad standing pulse. The latter regime is stable, readily providing for the generation of an array containing up to 10,000 permanent-shape pulses. The circulation regime provides for no more than 40 cycles, and then it transforms into the oscillation mode. The dependence of the dynamical regime on parameters of the system is investigated in detail.Comment: Journal of Physics B, in pres

    Synthesis and Properties of Dipyridylcyclopentenes

    Get PDF
    A short and general route to the substituted dipyridylcyclopentenes was explored and several new compounds belonging to this new group of diarylethenes were synthesized. The study of their photochromic and thermochromic properties shows that the rate of the thermal ring opening is strongly dependent on the polarity of the solvent.

    The BHK Color Diagram: a New Tool to Study Young Stellar Populations

    Get PDF
    A new method to derive age differences between the various super star clusters observed in starburst galaxies using the two color diagram (B-H) vs (H-K) is presented. This method offers a quick and easy way to differentiate very young and intermediate age stellar populations even if data on extinction are unavailable. In this case, discrimination of regions younger and older than 4 Myr is feasible. With the availability of data on extinction, the time resolution can be improved significantly. The application of the method to the starbursting system Arp 299 is presented. The validity of the method is confirmed by comparing the equivalent width of the H-alpha line with the chronological map of the northern part of NGC 3690.Comment: 32 pages, 7 figures, 1 table, AJ accepte

    Narrow Line Cooling: Finite Photon Recoil Dynamics

    Full text link
    We present an extensive study of the unique thermal and mechanical dynamics for narrow-line cooling on the 1S0 - 3P1 88Sr transition. For negative detuning, trap dynamics reveal a transition from the semiclassical regime to the photon-recoil-dominated quantum regime, yielding an absolute minima in the equilibrium temperature below the single-photon recoil limit. For positive detuning, the cloud divides into discrete momentum packets whose alignment mimics lattice points on a face-centered-cubic crystal. This novel behavior arises from velocity selection and "positive feedback" acceleration due to a finite number of photon recoils. Cooling is achieved with blue-detuned light around a velocity where gravity balances the radiative force.Comment: 4 pages, 3 figures, Phys. Rev. Lett., in pres

    Decoupling of the ϵ\epsilon-scalar mass in softly broken supersymmetry

    Full text link
    It has been shown recently that the introduction of an unphysical ϵ\epsilon-scalar mass m~\tilde{m} is necessary for the proper renormalization of softly broken supersymmetric theories by dimensional reduction (\drbar). In these theories, both the two-loop β\beta-functions of the scalar masses and their one-loop finite corrections depend on m~2\tilde{m}^2. We find, however, that the dependence on m~2\tilde{m}^2 can be completely removed by slightly modifying the \drbar renormalization scheme. We also show that previous \drbar calculations of one-loop corrections in supersymmetry which ignored the m~2\tilde{m}^2 contribution correspond to using this modified scheme.Comment: 7 pages, LTH-336, NUB-3094-94TH, KEK-TH-40

    Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging

    Get PDF
    A size-dependent strain relaxation and its effects on the optical properties of InGaN/GaN multiple quantum wells (QWs) in micro-pillars have been investigated through a combination of high spatial resolution cathodoluminescence (CL) hyperspectral imaging and numerical modeling. The pillars have diameters (d) ranging from 2 to 150 μm and were fabricated from a III-nitride light-emitting diode (LED) structure optimized for yellow-green emission at ∼560 nm. The CL mapping enables us to investigate strain relaxation in these pillars on a sub-micron scale and to confirm for the first time that a narrow (≤2 μm) edge blue-shift occurs even for the large InGaN/GaN pillars (d > 10 μm). The observed maximum blue-shift at the pillar edge exceeds 7 nm with respect to the pillar centre for the pillars with diameters in the 2–16 μm range. For the smallest pillar (d = 2 μm), the total blue-shift at the edge is 17.5 nm including an 8.2 nm “global” blue-shift at the pillar centre in comparison with the unetched wafer. By using a finite element method with a boundary condition taking account of a strained GaN buffer layer which was neglected in previous simulation works, the strain distribution in the QWs of these pillars was simulated as a function of pillar diameter. The blue-shift in the QWs emission wavelength was then calculated from the strain-dependent changes in piezoelectric field, and the consequent modification of transition energy in the QWs. The simulation and experimental results agree well, confirming the necessity for considering the strained buffer layer in the strain simulation. These results provide not only significant insights into the mechanism of strain relaxation in these micro-pillars but also practical guidance for design of micro/nano LEDs

    Electric Dipole Moments and Polarizability in the Quark-Diquark Model of the Neutron

    Full text link
    For a bound state internal wave function respecting parity symmetry, it can be rigorously argued that the mean electric dipole moment must be strictly zero. Thus, both the neutron, viewed as a bound state of three quarks, and the water molecule, viewed as a bound state of ten electrons two protons and an oxygen nucleus, both have zero mean electric dipole moments. Yet, the water molecule is said to have a nonzero dipole moment strength d=eΛd=e\Lambda with ΛH2O0.385 A˙\Lambda_{H_2O} \approx 0.385\ \dot{A}. The neutron may also be said to have an electric dipole moment strength with Λneutron0.612 fm\Lambda_{neutron} \approx 0.612\ fm. The neutron analysis can be made experimentally consistent, if one employs a quark-diquark model of neutron structure.Comment: four pages, two figure

    Neutrinos and Gauge Unification

    Full text link
    The approximate unification of gauge couplings is the best indirect evidence for low-energy supersymmetry, although it is not perfect in its simplest realizations. Given the experimental evidence for small non-zero neutrino masses, it is plausible to extend the MSSM with three right-handed neutrino chiral multiplets, with large Majorana masses below the unification scale, so that a see-saw mechanism can be implemented. In this extended MSSM, the unification prediction for the strong gauge coupling constant at M_Z can be lowered by up to \sim 5%, bringing it closer to the experimental value at 1\sigma, therefore improving significantly the accuracy of gauge coupling unification.Comment: 5 pages, LaTeX, 1 figur
    corecore