644,428 research outputs found

    Adiabatic State Conversion and Pulse Transmission in Optomechanical Systems

    Full text link
    Optomechanical systems with strong coupling can be a powerful medium for quantum state engineering. Here, we show that quantum state conversion between cavity modes with different wavelengths can be realized with high fidelity by adiabatically varying the effective optomechanical couplings. The fidelity for the conversion of gaussian states is derived by solving the Langevin equation in the adiabatic limit. We also show that photon pulses can be transmitted between input-output channels with different wavelengths via the effective optomechanical couplings and the output pulse shape can also be manipulated.Comment: 5 pages, 2 figures. Supplementary Materials at http://prl.aps.org/supplemental/PRL/v108/i15/e15360

    An efficient method for computing unsteady transonic aerodynamics of swept wings with control surfaces

    Get PDF
    A transonic equivalent strip (TES) method was further developed for unsteady flow computations of arbitrary wing planforms. The TES method consists of two consecutive correction steps to a given nonlinear code such as LTRAN2; namely, the chordwise mean flow correction and the spanwise phase correction. The computation procedure requires direct pressure input from other computed or measured data. Otherwise, it does not require airfoil shape or grid generation for given planforms. To validate the computed results, four swept wings of various aspect ratios, including those with control surfaces, are selected as computational examples. Overall trends in unsteady pressures are established with those obtained by XTRAN3S codes, Isogai's full potential code and measured data by NLR and RAE. In comparison with these methods, the TES has achieved considerable saving in computer time and reasonable accuracy which suggests immediate industrial applications
    • …
    corecore