12 research outputs found

    Breast cancer cell lines carry cell line-specific genomic alterations that are distinct from aberrations in breast cancer tissues: Comparison of the CGH profiles between cancer cell lines and primary cancer tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell lines are commonly used in various kinds of biomedical research in the world. However, it remains uncertain whether genomic alterations existing in primary tumor tissues are represented in cell lines and whether cell lines carry cell line-specific genomic alterations. This study was performed to answer these questions.</p> <p>Methods</p> <p>Array-based comparative genomic hybridization (CGH) was employed with 4030 bacterial artificial chromosomes (BACs) that cover the genome at 1.0 megabase resolution to analyze DNA copy number aberrations (DCNAs) in 35 primary breast tumors and 24 breast cancer cell lines. DCNAs were compared between these two groups. A tissue microdissection technique was applied to primary tumor tissues to reduce the contamination of samples by normal tissue components.</p> <p>Results</p> <p>The average number of BAC clones with DCNAs was 1832 (45.3% of spotted clones) and 971 (24.9%) for cell lines and primary tumor tissues, respectively. Gains of 1q and 8q and losses of 8p, 11q, 16q and 17p were detected in >50% of primary cancer tissues. These aberrations were also frequently detected in cell lines. In addition to these alterations, the cell lines showed recurrent genomic alterations including gains of 5p14-15, 20q11 and 20q13 and losses of 4p13-p16, 18q12, 18q21, Xq21.1 and Xq26-q28 that were barely detected in tumor tissue specimens. These are considered to be cell line-specific DCNAs. The frequency of the HER2 amplification was high in both cell lines and tumor tissues, but it was statistically different between cell lines and primary tumors (P = 0.012); 41.3 ± 29.9% for the cell lines and 15.9 ± 18.6% for the tissue specimens.</p> <p>Conclusions</p> <p>Established cell lines carry cell lines-specific DCNAs together with recurrent aberrations detected in primary tumor tissues. It must therefore be emphasized that cell lines do not always represent the genotypes of parental tumor tissues.</p

    A Meta-Analysis of Array-CGH Studies Implicates Antiviral Immunity Pathways in the Development of Hepatocellular Carcinoma

    Get PDF
    BACKGROUND: The development and progression of hepatocellular carcinoma (HCC) is significantly correlated to the accumulation of genomic alterations. Array-based comparative genomic hybridization (array CGH) has been applied to a wide range of tumors including HCCs for the genome-wide high resolution screening of DNA copy number changes. However, the relevant chromosomal variations that play a central role in the development of HCC still are not fully elucidated. METHODS: In present study, in order to further characterize the copy number alterations (CNAs) important to HCC development, we conducted a meta-analysis of four published independent array-CGH datasets including total 159 samples. RESULTS: Eighty five significant gains (frequency ≥ 25%) were mostly mapped to five broad chromosomal regions including 1q, 6p, 8q, 17q and 20p, as well as two narrow regions 5p15.33 and 9q34.2-34.3. Eighty eight significant losses (frequency ≥ 25%) were most frequently present in 4q, 6q, 8p, 9p, 13q, 14q, 16q, and 17p. Significant correlations existed between chromosomal aberrations either located on the same chromosome or the different chromosomes. HCCs with different etiologies largely exhibited surprisingly similar profiles of chromosomal aberrations with only a few exceptions. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the genes affected by these chromosomal aberrations were significantly enriched in 31 canonical pathways with the highest enrichment observed for antiviral immunity pathways. CONCLUSIONS: Taken together, our findings provide novel and important clues for the implications of antiviral immunity-related gene pathways in the pathogenesis and progression of HCC

    Cancer Cells Expressing Toll-like Receptors and the Tumor Microenvironment

    Get PDF
    Toll-like receptors (TLRs) play a crucial role in the innate immune response and the subsequent induction of adaptive immune responses against microbial infection or tissue injury. Recent findings show that functional TLRs are expressed not only on immune cells but also on cancer cells. TLRs play an active role in carcinogenesis and tumor progression during chronic inflammation that involves the tumor microenvironment. Damage-associated molecular patterns (DAMPs) derived from injured normal epithelial cells and necrotic cancer cells appear to be present at significant levels in the tumor microenvironment, and their stimulation of specific TLRs can foster chronic inflammation. This review discusses how carcinogenesis, cancer progression, and site-specific metastasis are related to interactions between cancer cells, immune cells, and DAMPs through TLR activation in the tumor microenvironment

    Nature meets nurture: molecular genetics of gastric cancer

    Get PDF
    The immensity of genes and molecules implicated in gastric carcinogenesis is overwhelming and the relevant importance of some of these molecules is too often unclear. This review serves to bring us up-to-date with the latest findings as well as to look at the larger picture in terms of how to tackle the problem of solving this multi-piece puzzle. In this review, the environmental nurturing of intestinal cancer is discussed, beginning with epidemiology (known causative factors for inducing molecular change), an update of H. pylori research, including the role of inflammation and stem cells in premalignant lesions. The role of E-cadherin in the nature (genotype) of diffuse gastric cancer is highlighted, and finally the ever growing discipline of SNP analysis (including IL1B) is discussed

    Multi-dose priming regimens of PfSPZ vaccine: safety and efficacy against controlled human malaria infection in Equatoguinean adults

    No full text
    Plasmodium falciparum sporozoites (PfSPZ) Vaccine is composed of radiation-attenuated, aseptic, purified cryopreserved PfSPZ. Multiple clinical trials empirically assessing two to six doses have shown multi-dose priming (-two to four doses the first week) to be optimal for protection in both 4- and 16-week regimens. In this randomized, double-blind, normal saline (NS), placebo-controlled trial, four groups (G) of 18- to 32-year-old Equatoguineans received multi-dose priming regimens with or without a delayed final dose at 4 or 16 weeks (9 x 105 PfSPZ/dose). The regimens were G1: days 1, 3, 5, 7, and 113; G2: days 1, 3, 5, and 7; G3: days 1, 3, 5, 7, and 29; and G4: days 1, 8, and 29). All doses were 9 x 105 PfSPZ. Tolerability, safety, immunogenicity, and vaccine efficacy (VE) against homologous-controlled human malaria infection (CHMI) 6-7 weeks after vaccination were assessed to down-select the best regimen. All four regimens were safe and well tolerated, with no significant differences in adverse events (AEs) between vaccinees (N = 84) and NS controls (N = 20) or between regimens. Out of 19 controls, 13 developed Pf parasitemia by quantitative polymerase chain reaction (qPCR) after CHMI. Only the vaccine regimen administered on study days 1, 8, and 29 gave significant protection (7/21 vaccinees versus 13/19 controls infected, VE 51.3%, P = 0.03, Barnard's test, two-tailed). There were no significant differences in antibodies against Pf circumporozoite protein (PfCSP), a major SPZ antigen, between protected and nonprotected vaccinees or controls pre-CHMI. The six controls not developing Pf parasitemia had significantly higher antibodies to blood stage antigens Pf exported protein 1 (PfEXP1) and Pf merozoite surface protein 1 (PfMSP1) than the controls who developed parasitemia, suggesting naturally acquired immunity against Pf-limited infections in controls. This study identified a safe, protective, 4-week, multi-dose prime vaccination regimen for assessment in future trials of PfSPZ Vaccine
    corecore