3,100 research outputs found

    Vortices in Bose-Einstein Condensate Dark Matter

    Full text link
    If dark matter in the galactic halo is composed of bosons that form a Bose-Einstein condensate then it is likely that the rotation of the halo will lead to the nucleation of vortices. After a review of the Gross-Pitaevskii equation, the Thomas-Fermi approximation and vortices in general, we consider vortices in detail. We find strong bounds for the boson mass, interaction strength, the shape and quantity of vortices in the halo, the critical rotational velocity for the nucleation of vortices and, in the Thomas-Fermi regime, an exact solution for the mass density of a single, axisymmetric vortex.Comment: 10 pages, 3 figures; minor corrections, references adde

    The Effect of Sources on the Inner Horizon of Black Holes

    Full text link
    Single pulse of null dust and colliding null dusts both transform a regular horizon into a space-like singularity in the space of colliding waves. The local isometry between such space-times and black holes extrapolates these results to the realm of black holes. However, inclusion of particular scalar fields instead of null dusts creates null singularities rather than space-like ones on the inner horizons of black holes.Comment: Final version to appear in PR

    From the self-force problem to the Radiation reaction formula

    Get PDF
    We review a recent theoretical progress in the so-called self-force problem of a general relativistic two-body system. Although a two-body system in Newtonian gravity is a very simple problem, some fundamental issues are involved in relativistic gravity. Besides, because of recent projects for gravitational wave detection, it comes to be possible to see those phenomena directly via gravitational waves, and the self-force problem becomes one of urgent and highly-motivated problems in general relativity. Roughly speaking, there are two approaches to investigate this problem; the so-called post-Newtonian approximation, and a black hole perturbation. In this paper, we review a theoretical progress in the self-force problem using a black hole perturbation. Although the self-force problem seems to be just a problem to calculate a self-force, we discuss that the real problem is to define a gauge invariant concept of a motion in a gauge dependent metric perturbation.Comment: a special issue for Classical and Quantum Gravity, a review article of Capra Ranch Meeting

    Statistics of Largest Loops in a Random Walk

    Full text link
    We report further findings on the size distribution of the largest neutral segments in a sequence of N randomly charged monomers [D. Ertas and Y. Kantor, Phys. Rev. E53, 846 (1996); cond-mat/9507005]. Upon mapping to one--dimensional random walks (RWs), this corresponds to finding the probability distribution for the size L of the largest segment that returns to its starting position in an N--step RW. We primarily focus on the large N, \ell = L/N << 1 limit, which exhibits an essential singularity. We establish analytical upper and lower bounds on the probability distribution, and numerically probe the distribution down to \ell \approx 0.04 (corresponding to probabilities as low as 10^{-15}) using a recursive Monte Carlo algorithm. We also investigate the possibility of singularities at \ell=1/k for integer k.Comment: 5 pages and 4 eps figures, requires RevTeX, epsf and multicol. Postscript file also available at http://cmtw.harvard.edu/~deniz/publications.htm

    Analytical approximation for the structure of differentially rotating barotropes

    Full text link
    Approximate analytical formula for density distribution in differentially rotating stars is derived. Any barotropic EOS and conservative rotation law can be handled with use of this method for wide range of differential rotation strength. Results are in good qualitative agreement with comparison to the other methods. Some applications are suggested and possible improvements of the formula are discussed.Comment: 10 pages, 13 figures, accepted for publication in Monthly Notice

    Temperature dependent photoluminescence of organic semiconductors with varying backbone conformation

    Get PDF
    We present photoluminescence studies as a function of temperature from a series of conjugated polymers and a conjugated molecule with distinctly different backbone conformations. The organic materials investigated here are: planar methylated ladder type poly para-phenylene, semi-planar polyfluorene, and non-planar para hexaphenyl. In the longer-chain polymers the photoluminescence transition energies blue shift with increasing temperatures. The conjugated molecules, on the other hand, red shift their transition energies with increasing temperatures. Empirical models that explain the temperature dependence of the band gap energies in inorganic semiconductors can be extended to explain the temperature dependence of the transition energies in conjugated molecules.Comment: 8 pages, 9 figure

    Orbital Ferromagnetism and Quantum Collapse in Stellar Plasmas

    Full text link
    The possibility of quantum collapse and characteristics of nonlinear localized excitations is examined in dense stars with Landau orbital ferromagnetism in the framework of conventional quantum magnetohydrodynamics (QMHD) model including Bohm force and spin-orbit polarization effects. Employing the concepts of effective potential and Sagdeev pseudopotential, it is confirmed that the quantum collapse and Landau orbital ferromagnetism concepts are consistent with the magnetic field and mass-density range present in some white dwarf stars. Furthermore, the value of ferromagnetic-field found in this work is about the same order of magnitude as the values calculated earlier. It is revealed that the magnetosonic nonlinear propagations can behave much differently in the two distinct non-relativistic and relativistic degeneracy regimes in a ferromagnetic dense astrophysical object. Current findings should help to understand the origin of the most important mechanisms such as gravitational collapse and the high magnetic field present in many compact stars.Comment: To appear in journal Physics of Plasma

    Solution of the Dirac equation in the rotating Bertotti-Robinson spacetime

    Full text link
    The Dirac equation is solved in the rotating Bertotti-Robinson spacetime. The set of equations representing the Dirac equation in the Newman-Penrose formalism is decoupled into an axial and angular part. The axial equation, which is independent of mass, is solved exactly in terms of hypergeometric functions. The angular equation is considered both for massless (neutrino) and massive spin-(1/2) particles. For the neutrinos, it is shown that the angular equation admits an exact solution in terms of the confluent Heun equation. In the existence of mass, the angular equation does not allow an analytical solution, however, it is expressible as a set of first order differential equations apt for numerical study.Comment: 17 pages, no figure. Appeared in JMP (May, 2008

    Intermediate-mass-ratio-inspirals in the Einstein Telescope: I. Signal-to-noise ratio calculations

    Full text link
    The Einstein Telescope (ET) is a proposed third generation ground-based interferometer, for which the target is a sensitivity that is a factor of ten better than Advanced LIGO and a frequency range that extends down to about 1Hz. ET will provide opportunities to test Einstein's theory of relativity in the strong field and will realize precision gravitational wave astronomy with a thousandfold increase in the expected number of events over the advanced ground-based detectors. A design study for ET is currently underway, so it is timely to assess the science that could be done with such an instrument. This paper is the first in a series that will carry out a detailed study of intermediate-mass-ratio inspirals (IMRIs) for ET. In the context of ET, an IMRI is the inspiral of a neutron star or stellar-mass black hole into an intermediate mass black hole (IMBH). In this paper we focus on the development of IMRI waveform models for circular and equatorial inspirals. We consider two approximations for the waveforms, which both incorporate the inspiral, merger and ringdown phases in a consistent way. One approximation, valid for IMBHs of arbitrary spin, uses the transition model of Ori and Thorne [1] to describe the merger, and this is then matched smoothly onto a ringdown waveform. The second approximation uses the Effective One Body (EOB) approach to model the merger phase of the waveform and is valid for non-spinning IMBHs. In this paper, we use both waveform models to compute signal-to-noise ratios (SNRs) for IMRI sources detectable by ET. At a redshift of z=1, we find typical SNRs for IMRI systems with masses 1.4+100 solar masses, 10+100 solar masses, 1.4+500 solar masses and 10+500 solar masses of about 10-25, 40-80, 3-15 and 10-60, respectively. We also find that the two models make predictions for non-spinning inspirals that are consistent to about ten percent.Comment: 27 pages, 9 figures, v3 has an updated reference for consistency with accepted versio

    Persistent junk solutions in time-domain modeling of extreme mass ratio binaries

    Full text link
    In the context of metric perturbation theory for non-spinning black holes, extreme mass ratio binary (EMRB) systems are described by distributionally forced master wave equations. Numerical solution of a master wave equation as an initial boundary value problem requires initial data. However, because the correct initial data for generic-orbit systems is unknown, specification of trivial initial data is a common choice, despite being inconsistent and resulting in a solution which is initially discontinuous in time. As is well known, this choice leads to a "burst" of junk radiation which eventually propagates off the computational domain. We observe another unintended consequence of trivial initial data: development of a persistent spurious solution, here referred to as the Jost junk solution, which contaminates the physical solution for long times. This work studies the influence of both types of junk on metric perturbations, waveforms, and self-force measurements, and it demonstrates that smooth modified source terms mollify the Jost solution and reduce junk radiation. Our concluding section discusses the applicability of these observations to other numerical schemes and techniques used to solve distributionally forced master wave equations.Comment: Uses revtex4, 16 pages, 9 figures, 3 tables. Document reformatted and modified based on referee's report. Commentary added which addresses the possible presence of persistent junk solutions in other approaches for solving master wave equation
    • …
    corecore