1,564 research outputs found
Control of Coercivities in (Ga,Mn)As Thin Films by Small Concentrations of MnAs Nanoclusters
We demonstrate that low concentrations of a secondary magnetic phase in
(Ga,Mn)As thin films can enhance the coercivity by factors up to ~100 without
significantly degrading the Curie temperature or saturation magnetisation.
Magnetic measurements indicate that the secondary phase consists of MnAs
nanoclusters, of average size ~7nm. This approach to controlling the coercivity
while maintaining high Curie temperature, may be important for realizing
ferromagnetic semiconductor based devices.Comment: 8 pages,4 figures. accepted for publication in Appl. Phys. Let
Reorientation Transition in Single-Domain (Ga,Mn)As
We demonstrate that the interplay of in-plane biaxial and uniaxial anisotropy
fields in (Ga,Mn)As results in a magnetization reorientation transition and an
anisotropic AC susceptibility which is fully consistent with a simple single
domain model. The uniaxial and biaxial anisotropy constants vary respectively
as the square and fourth power of the spontaneous magnetization across the
whole temperature range up to T_C. The weakening of the anisotropy at the
transition may be of technological importance for applications involving
thermally-assisted magnetization switching.Comment: 4 pages, 4 figure
DC-transport properties of ferromagnetic (Ga,Mn)As semiconductors
We study the dc transport properties of (Ga,Mn)As diluted magnetic
semiconductors with Mn concentration varying from 1.5% to 8%. Both diagonal and
Hall components of the conductivity tensor are strongly sensitive to the
magnetic state of these semiconductors. Transport data obtained at low
temperatures are discussed theoretically within a model of band-hole
quasiparticles with a finite spectral width due to elastic scattering from Mn
and compensating defects. The theoretical results are in good agreement with
measured anomalous Hall effect and anisotropic longitudinal magnetoresistance
data. This quantitative understanding of dc magneto-transport effects in
(Ga,Mn)As is unparalleled in itinerant ferromagnetic systems.Comment: 3 pages, 3 figure
M2000 : an astrometric catalog in the Bordeaux Carte du Ciel zone +11 degrees < {delta} < +18 degrees
During four years, systematic observations have been conducted in drift scan
mode with the Bordeaux automated meridian circle in the declination band [+11 ;
+18]. The resulting astrometric catalog includes about 2 300 000 stars down to
the magnitude limit V_M=16.3. Nearly all stars (96%) have been observed at
least 6 times, the catalog being complete down to V_M=15.4. The median internal
standard error in position is about 35 mas in the V_M magnitude range [11 ;
15], which degrades to about 50 mas when the faintest stars are considered.
M2000 provides also one band photometry with a median internal standard error
of 0.04 mag. Comparisons with the Hipparcos and bright part of Tycho-2 catalogs
have enabled to estimate external errors in position to be lower than 40 mas.
In this zone and at epoch 1998, the faint part of Tycho-2 is found to have an
accuracy of 116 mas in alpha instead of 82 mas deduced from the model-based
standard errors given in the catalog.Comment: The catalogue can be fetched directly from:
ftp://cdsarc.u-strasbg.fr/cats/I/272 or queried from:
http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=I/272 More information at :
http://www.observ.u-bordeaux.fr/~soubiran/m2000.ht
Search For Hole Mediated Ferromagnetism In Cubic (Ga,Mn)N
Results of magnetisation measurements on p-type zincblende-(Ga,Mn)N are
reported. In addition to a small high temperature ferromagnetic signal, we
detect ferromagnetic correlation among the remaining Mn ions, which we assign
to the onset of hole-mediated ferromagnetism in (Ga,Mn)N.Comment: 2 pages, 1 figure, proc. ICPS 27, Flagstaff '0
Mn Interstitial Diffusion in (Ga,Mn)As
We present a combined theoretical and experimental study of the ferromagnetic
semiconductor (Ga,Mn)As which explains the remarkably large changes observed on
low temperature annealing. Careful control of the annealing conditions allows
us to obtain samples with ferromagnetic transition temperatures up to 159 K. Ab
initio calculations, and resistivity measurements during annealing, show that
the observed changes are due to out-diffusion of Mn interstitials towards the
surface, governed by an energy barrier of about 0.7-0.8 eV. The Mn interstitial
is a double donor resulting in compensation of charge carriers and suppression
of ferromagnetism. Electric fields induced by high concentrations of
substitutional Mn acceptors have a significant effect on the diffusion.Comment: 5 pages, 4 figures, submitted to Physical Review Letter
- …