6 research outputs found

    Cellobiase from Termitomyces clypeatus: activity and secretion in presence of glycosylation inhibitors

    No full text
    In presence of the glycosylation inhibitors, 2-deoxy-D-glucose (1 mg/ml), tunicamycin (30 lg/ml), 1-deoxynojirimycin (30 lg/ml) and D-glucono-d-lactone (1 mg/ml), total cellobiase activity, in the extracellular, intracellular and cell bound fractions, of the fungus Termitomyces clypeatus grown in 20 ml cellobiose medium (1%, w/v) increased by 50-, 1.8-, 2.4-, 1.3-fold, respectively, with respect to control medium (16.3 U). The inhibitors also stimulated secretion of 95% of the total protein in culture medium, except D-glucono-d-lactone which released 60% of the total protein. 2-Deoxy-D-glucose (1 mg/ml) led to production of extracellular cellobiase up to 40 U/ml, whereas in absence of the inhibitors only 0.59 U/ml enzyme was detected

    \u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Get PDF
    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu
    corecore