496 research outputs found

    Dynamics of Vibrated Granular Monolayers

    Full text link
    We study statistical properties of vibrated granular monolayers using molecular dynamics simulations. We show that at high excitation strengths, the system is in a gas state, particle motion is isotropic, and the velocity distributions are Gaussian. As the vibration strength is lowered the system's dimensionality is reduced from three to two. Below a critical excitation strength, a gas-cluster phase occurs, and the velocity distribution becomes bimodal. In this phase, the system consists of clusters of immobile particles arranged in close-packed hexagonal arrays, and gas particles whose energy equals the first excited state of an isolated particle on a vibrated plate.Comment: 4 pages, 6 figs, revte

    Stochastic Aggregation: Scaling Properties

    Full text link
    We study scaling properties of stochastic aggregation processes in one dimension. Numerical simulations for both diffusive and ballistic transport show that the mass distribution is characterized by two independent nontrivial exponents corresponding to the survival probability of particles and monomers. The overall behavior agrees qualitatively with the mean-field theory. This theory also provides a useful approximation for the decay exponents, as well as the limiting mass distribution.Comment: 6 pages, 7 figure

    Alignment of Rods and Partition of Integers

    Full text link
    We study dynamical ordering of rods. In this process, rod alignment via pairwise interactions competes with diffusive wiggling. Under strong diffusion, the system is disordered, but at weak diffusion, the system is ordered. We present an exact steady-state solution for the nonlinear and nonlocal kinetic theory of this process. We find the Fourier transform as a function of the order parameter, and show that Fourier modes decay exponentially with the wave number. We also obtain the order parameter in terms of the diffusion constant. This solution is obtained using iterated partitions of the integer numbers.Comment: 6 pages, 4 figure

    Discrete Analog of the Burgers Equation

    Full text link
    We propose the set of coupled ordinary differential equations dn_j/dt=(n_{j-1})^2-(n_j)^2 as a discrete analog of the classic Burgers equation. We focus on traveling waves and triangular waves, and find that these special solutions of the discrete system capture major features of their continuous counterpart. In particular, the propagation velocity of a traveling wave and the shape of a triangular wave match the continuous behavior. However, there are some subtle differences. For traveling waves, the propagating front can be extremely sharp as it exhibits double exponential decay. For triangular waves, there is an unexpected logarithmic shift in the location of the front. We establish these results using asymptotic analysis, heuristic arguments, and direct numerical integration.Comment: 6 pages, 5 figure

    Ballistic annihilation kinetics for a multi-velocity one-dimensional ideal gas

    Full text link
    Ballistic annihilation kinetics for a multi-velocity one-dimensional ideal gas is studied in the framework of an exact analytic approach. For an initial symmetric three-velocity distribution, the problem can be solved exactly and it is shown that different regimes exist depending on the initial fraction of particles at rest. Extension to the case of a n-velocity distribution is discussed.Comment: 19 pages, latex, uses Revtex macro

    Statistics of Partial Minima

    Full text link
    Motivated by multi-objective optimization, we study extrema of a set of N points independently distributed inside the d-dimensional hypercube. A point in this set is k-dominated by another point when at least k of its coordinates are larger, and is a k-minimum if it is not k-dominated by any other point. We obtain statistical properties of these partial minima using exact probabilistic methods and heuristic scaling techniques. The average number of partial minima, A, decays algebraically with the total number of points, A ~ N^{-(d-k)/k}, when 1<=k<d. Interestingly, there are k-1 distinct scaling laws characterizing the largest coordinates as the distribution P(y_j) of the jth largest coordinate, y_j, decays algebraically, P(y_j) ~ (y_j)^{-alpha_j-1}, with alpha_j=j(d-k)/(k-j) for 1<=j<=k-1. The average number of partial minima grows logarithmically, A ~ [1/(d-1)!](ln N)^{d-1}, when k=d. The full distribution of the number of minima is obtained in closed form in two-dimensions.Comment: 6 pages, 1 figur

    Kinetics and scaling in ballistic annihilation

    Full text link
    We study the simplest irreversible ballistically-controlled reaction, whereby particles having an initial continuous velocity distribution annihilate upon colliding. In the framework of the Boltzmann equation, expressions for the exponents characterizing the density and typical velocity decay are explicitly worked out in arbitrary dimension. These predictions are in excellent agreement with the complementary results of extensive Monte Carlo and Molecular Dynamics simulations. We finally discuss the definition of universality classes indexed by a continuous parameter for this far from equilibrium dynamics with no conservation laws

    Ballistic Annihilation

    Full text link
    Ballistic annihilation with continuous initial velocity distributions is investigated in the framework of Boltzmann equation. The particle density and the rms velocity decay as c=t−αc=t^{-\alpha} and =t−β=t^{-\beta}, with the exponents depending on the initial velocity distribution and the spatial dimension. For instance, in one dimension for the uniform initial velocity distribution we find β=0.230472...\beta=0.230472.... We also solve the Boltzmann equation for Maxwell particles and very hard particles in arbitrary spatial dimension. These solvable cases provide bounds for the decay exponents of the hard sphere gas.Comment: 4 RevTeX pages and 1 Eps figure; submitted to Phys. Rev. Let

    Addition-Deletion Networks

    Full text link
    We study structural properties of growing networks where both addition and deletion of nodes are possible. Our model network evolves via two independent processes. With rate r, a node is added to the system and this node links to a randomly selected existing node. With rate 1, a randomly selected node is deleted, and its parent node inherits the links of its immediate descendants. We show that the in-component size distribution decays algebraically, c_k ~ k^{-beta}, as k-->infty. The exponent beta=2+1/(r-1) varies continuously with the addition rate r. Structural properties of the network including the height distribution, the diameter of the network, the average distance between two nodes, and the fraction of dangling nodes are also obtained analytically. Interestingly, the deletion process leads to a giant hub, a single node with a macroscopic degree whereas all other nodes have a microscopic degree.Comment: 8 pages, 5 figure

    Kinetics of Clustering in Traffic Flows

    Full text link
    We study a simple aggregation model that mimics the clustering of traffic on a one-lane roadway. In this model, each ``car'' moves ballistically at its initial velocity until it overtakes the preceding car or cluster. After this encounter, the incident car assumes the velocity of the cluster which it has just joined. The properties of the initial distribution of velocities in the small velocity limit control the long-time properties of the aggregation process. For an initial velocity distribution with a power-law tail at small velocities, \pvim as v→0v \to 0, a simple scaling argument shows that the average cluster size grows as n \sim t^{\va} and that the average velocity decays as v \sim t^{-\vb} as t→∞t\to \infty. We derive an analytical solution for the survival probability of a single car and an asymptotically exact expression for the joint mass-velocity distribution function. We also consider the properties of spatially heterogeneous traffic and the kinetics of traffic clustering in the presence of an input of cars.Comment: 18 pages, Plain TeX, 2 postscript figure
    • …
    corecore