14 research outputs found

    Climate change adaptation options in farming communities of selected Nigerian ecological zones

    Get PDF
    This chapter examines the impacts of climate change on three tropical crops and assesses the climate change adaptation options adopted by rural farmers in the region. The study was conducted among farming communities settled in three major ecological zones in Nigeria. Over 37 years of data on rainfall and temperature were analyzed to examine climate change impacts on three major crops: rice, maize, and cassava. Farmers' adaptive capacity was assessed with a survey. Climatic data, crop yields, and survey data were analyzed using both descriptive and inferential statistics. The relation between rainfall/temperature and crop yields was examined using the Pearson correlation coefficient. Results show a high variation in the annual rainfall and temperature during the study period. The major findings from this research is that crops in different ecological zones respond differently to climate variation. The result revealed that there is a very strong relationship between precipitation and the yield of rice and cassava at p <0.05 level of significance. The results further showed low level of adaption among the rural farmers. The study concludes that rainfall and temperature variability has a significant impact on crop yield in the study area, but that the adaptive capacity of most farmers to these impacts is low. There is a need for enhancing the adaptation options available to farmers in the region, which should be the focus of government policies

    Africa

    Get PDF
    Africa is one of the lowest contributors to greenhouse gas emissions causing climate change, yet key development sectors have already experienced widespread losses and damages attributable to human-induced climate change, including biodiversity loss, water shortages, reduced food production, loss of lives and reduced economic growth (high confidence1).// Between 1.5°C and 2°C global warming—assuming localised and incremental adaptation—negative impacts are projected to become widespread and severe with reduced food production, reduced economic growth, increased inequality and poverty, biodiversity loss, increased human morbidity and mortality (high confidence). Limiting global warming to 1.5°C is expected to substantially reduce damages to African economies, agriculture, human health, and ecosystems compared to higher levels of global warming (high confidence).// Exposure and vulnerability to climate change in Africa are multi-dimensional with socioeconomic, political and environmental factors intersecting (very high confidence). Africans are disproportionately employed in climate-exposed sectors: 55–62% of the sub-Saharan workforce is employed in agriculture and 95% of cropland is rainfed. In rural Africa, poor and female-headed households face greater livelihood risks from climate hazards. In urban areas, growing informal settlements without basic services increase the vulnerability of large populations to climate hazards, especially women, children and the elderly. // Adaptation in Africa has multiple benefits, and most assessed adaptation options have medium effectiveness at reducing risks for present-day global warming, but their efficacy at future warming levels is largely unknown (high confidence)./

    Empirical model for the assessment of climate change impacts on spatial pattern of water availability in Nigeria

    No full text
    Rising temperatures and changing rainfall patterns due to global warming would affect sustainability in water resources in many regions. This change would impact several sectors, particularly the agricultural and water resources. The major objective of the present study is to model the impacts of climate change on spatial variability in water sustainability of Nigeria. Gauge based gridded rainfall data of global precipitation climatology centre (GPCC) and temperature data of climate research unit (CRU) for the period 1901–2010 and total water storage (TWS) anomaly data of Gravity Recovery and Climate Experiment (GRACE) for the period 2002–2016 were used for this purpose. The concept of reliability-resiliency-vulnerability was used for the assessment of sustainability in water resources. Machine learning models were used for the development of empirical models for the simulation of TWS from GPCC rainfall and CRU temperature. Finally, the multi-model ensemble mean projections of rainfall and temperature of four GCMs namely MRI-CGCM3, HadGEM2-ES, CSIRO-Mk3-6-0 and CESM1-CAM5 were used in the model for the assessment of climate change impact on water sustainability. The results revealed the declination of TWS in Nigeria up to -12 m during the rainy periods in some parts. Spatial assessment of the changes in TWS for the future shows the northeast, southeast and south-south parts would mostly experience decreases in TWS. Water sustainability will be low in these areas and some other parts of the country for the future
    corecore