2,108 research outputs found

    Motion of a condensate in a shaken and vibrating harmonic trap

    Full text link
    The dynamics of a Bose-Einstein condensate (BEC) in a time-dependent harmonic trapping potential is determined for arbitrary variations of the position of the center of the trap and its frequencies. The dynamics of the BEC wavepacket is soliton-like. The motion of the center of the wavepacket, and the spatially and temporally dependent phase (which affects the coherence properties of the BEC) multiplying the soliton-like part of the wavepacket, are analytically determined.Comment: Accepted for publication in J. Phys. B: At Mol Opt Phy

    Synchronization Transition in the Kuramoto Model with Colored Noise

    Full text link
    We present a linear stability analysis of the incoherent state in a system of globally coupled, identical phase oscillators subject to colored noise. In that we succeed to bridge the extreme time scales between the formerly studied and analytically solvable cases of white noise and quenched random frequencies.Comment: 4 pages, 2 figure

    Denaturation of Circular DNA: Supercoil Mechanism

    Full text link
    The denaturation transition which takes place in circular DNA is analyzed by extending the Poland-Scheraga model to include the winding degrees of freedom. We consider the case of a homopolymer whereby the winding number of the double stranded helix, released by a loop denaturation, is absorbed by \emph{supercoils}. We find that as in the case of linear DNA, the order of the transition is determined by the loop exponent cc. However the first order transition displayed by the PS model for c>2c>2 in linear DNA is replaced by a continuous transition with arbitrarily high order as cc approaches 2, while the second-order transition found in the linear case in the regime 1<c21<c\le2 disappears. In addition, our analysis reveals that melting under fixed linking number is a \emph{condensation transition}, where the condensate is a macroscopic loop which appears above the critical temperature.Comment: 9 pages, 4 figure

    Emission of Massive Scalar Fields by a Higher-Dimensional Rotating Black-Hole

    Full text link
    We perform a comprehensive study of the emission of massive scalar fields by a higher-dimensional, simply rotating black hole both in the bulk and on the brane. We derive approximate, analytic results as well as exact numerical ones for the absorption probability, and demonstrate that the two sets agree very well in the low and intermediate-energy regime for scalar fields with mass m_\Phi < 1 TeV in the bulk and m_\Phi < 0.5 TeV on the brane. The numerical values of the absorption probability are then used to derive the Hawking radiation power emission spectra in terms of the number of extra dimensions, angular-momentum of the black hole and mass of the emitted field. We compute the total emissivities in the bulk and on the brane, and demonstrate that, although the brane channel remains the dominant one, the bulk-over-brane energy ratio is considerably increased (up to 33%) when the mass of the emitted field is taken into account.Comment: 28 pages, 18 figure

    Exciton states in cylindrical nanowires

    Full text link
    The exciton ground state and excited state energies are calculated for a model system of an infinitely long cylindrical wire. The effective Coulomb potential between the electron and the hole is studied as function of the wire radius. Within the adiabatic approximation, we obtain `exact' numerical results for the effective exciton potential and the lowest exciton energy levels which are fitted to simple analytical expressions. Furthermore, we investigated the influence of a magnetic field parallel to the nanowire on the effective potential and the exciton energy.Comment: 9 pages, 9 figures. Submitted for publication to PRB. Figures must be downloaded seperatel

    Quasi-Ferromagnet Spintronics in Graphene Nanodisk-Lead System

    Full text link
    A zigzag graphene nanodisk can be interpreted as a quantum dot with an internal degree of freedom. It is well described by the infinite-range Heisenberg model. We have investigated its thermodynamical properties. There exists a quasi-phase transition between the quasi-ferromagnet and quasi-paramagnet states, as signaled by a sharp peak in the specific heat and in the susceptability. We have also analyzed how thermodynamical properties are affected when two leads are attached to the nanodisk. It is shown that lead effects are described by the many-spin Kondo Hamiltonian. There appears a new peak in the specific heat, and the multiplicity of the ground state becomes just one half of the system without leads. Another lead effect is to enhance the ferromagnetic order. Being a ferromagnet, a nanodisk can be used as a spin filter. Furthermore, since the relaxation time is finite, it is possible to control the spin of the nanodisk by an external spin current. We then propose a rich variety of spintronic devices made of nanodisks and leads, such as spin memory, spin amplifier, spin valve, spin-field-effect transistor, spin diode and spin logic gates such as spin-XNOR gate and spin-XOR gate. Graphene nanodisks could well be basic components of future nanoelectronic and spintronic devices.Comment: 12 pages, 13 figures, invited paper to "focus on graphene

    The few-body problem in terms of correlated gaussians

    Full text link
    In their textbook, Suzuki and Varga [Y. Suzuki and K. Varga, {\em Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems} (Springer, Berlin, 1998)] present the stochastic variational method in a very exhaustive way. In this framework, the so-called correlated gaussian bases are often employed. General formulae for the matrix elements of various operators can be found in the textbook. However the Fourier transform of correlated gaussians and their application to the management of a relativistic kinetic energy operator are missing and cannot be found in the literature. In this paper we present these interesting formulae. We give also a derivation for new formulations concerning central potentials; the corresponding formulae are more efficient numerically than those presented in the textbook.Comment: 10 page

    Coupled Oscillators with Chemotaxis

    Full text link
    A simple coupled oscillator system with chemotaxis is introduced to study morphogenesis of cellular slime molds. The model successfuly explains the migration of pseudoplasmodium which has been experimentally predicted to be lead by cells with higher intrinsic frequencies. Results obtained predict that its velocity attains its maximum value in the interface region between total locking and partial locking and also suggest possible roles played by partial synchrony during multicellular development.Comment: 4 pages, 5 figures, latex using jpsj.sty and epsf.sty, to appear in J. Phys. Soc. Jpn. 67 (1998

    Coulomb corrected eikonal description of the breakup of halo nuclei

    Full text link
    The eikonal description of breakup reactions diverges because of the Coulomb interaction between the projectile and the target. This divergence is due to the adiabatic, or sudden, approximation usually made, which is incompatible with the infinite range of the Coulomb interaction. A correction for this divergence is analysed by comparison with the Dynamical Eikonal Approximation, which is derived without the adiabatic approximation. The correction consists in replacing the first-order term of the eikonal Coulomb phase by the first-order of the perturbation theory. This allows taking into account both nuclear and Coulomb interactions on the same footing within the computationally efficient eikonal model. Excellent results are found for the dissociation of 11Be on lead at 69 MeV/nucleon. This Coulomb Corrected Eikonal approximation provides a competitive alternative to more elaborate reaction models for investigating breakup of three-body projectiles at intermediate and high energies.Comment: 19 pages, 9 figures, accepted for publication in Phys. Rev.

    Soliton states in mesoscopic two-band-superconducting cylinders

    Get PDF
    In the framework of the Ginzburg-Landau approach, we present a self-consistent theory of specific soliton states in mesoscopic (thin-walled) two-band-superconducting cylinders in external parallel magnetic fields. Such states arise in the presence of "Josephson-type" interband coupling, when phase winding numbers are different for each component of the superconducting order parameter. We evaluate the Gibbs free energy of the sysyem up to second-order terms in a certain dimensionless parameter ϵLmLk1\epsilon\approx\frac{\mathcal{L}_{m}}{\mathcal{L}_{k}}\ll1, where Lm\mathcal{L}_{m} and Lk\mathcal{L}_{k} are the magnetic and kinetic inductance, respectively. We derive the complete set of exact soliton solutions. These solutions are thoroughly analyzed from the viewpoint of both local and global (thermodynamic) stability. In particular, we show that rotational-symmetry-breaking caused by the formation of solitons gives rise to a zero-frequency rotational mode. Although soliton states prove to be thermodynamically metastable, the minimal energy gap between the lowest-lying single-soliton states and thermodynamically stable zero-soliton states can be much smaller than the magnetic Gibbs free energy of the latter states, provided that intraband "penetration depths" differ substantially and interband coupling is weak. The results of our investigation may apply to a wide class of mesoscopic doubly-connected structures exhibiting two-band superconductivity.Comment: 15 pages, 3 figure
    corecore