9 research outputs found

    Effects of simulation in understanding the law of large numbers

    Get PDF
    This paper presents some of the results in a research about the probabilistic reasoning processes of twelve students from 12 to 15 years old ina public school in a municipality in the department of Santander (Colombia) about the Law of Large Numbers. After living a direct experience, students performed simulations using Probability Explorer. The results suggest that to become aware of the variability in the short term and of the stability in the long one of the relative frequencies bidirectional activities involving the sample space and results must be done. Keywords: Probability, law of large numbers, intuitions, randomized experiments, relative frequencies, computational simulator.En este trabajo se presentan algunos de los resultados obtenidosen una investigación que indagaba por los procesos de razonamiento probabilístico de doce estudiantes entre 12 y 15 años de un colegio público en un municipio en el departamento de Santander (Colombia), alrededor de la Leyde los Grandes Números. Después de vivir una experiencia directa, los estudiantes realizaron simulaciones utilizando Probability Explorer. Los resultadossugieren que para tomar conciencia de la variabilidad en el corto plazo y de la estabilidad a largo plazo de las frecuencias relativas deben realizarse actividades bidireccionales que involucren el espacio muestral y los resultados obtenidos. &nbsp

    Assessing bio-oil co-processing routes as CO<sub>2</sub> mitigation strategies in oil refineries

    No full text
    The oil industry needs to reduce CO2 emissions across the entire lifecycle of fossil fuels to meet environmental regulations and societal requirements and to sustain its business. With this goal in mind, this study aims to evaluate the CO2 mitigation potential of several bio-oil co-processing pathways in an oil refinery. Techno-economic analysis was conducted on different pathways and their greenhouse gas (GHG) mitigation potentials were compared. Thirteen pathways with different bio-oils, including vegetable oil (VO), fast pyrolysis oil (FPO), hydro-deoxygenated oil (HDO), catalytic pyrolysis oil (CPO), hydrothermal liquefaction oil (HTLO), and Fischer–Tropsch fuels, were analyzed. However, no single pathway could be presented as the best option. This would depend on the criteria used and the target of the co-processing route. The results obtained indicated that up to 15% of the fossil-fuel output in the refinery could be replaced by biofuel without major changes in the core activities of the refinery. The consequent reduction in CO2 emissions varied from 33% to 84% when compared with pure equivalent fossil fuels replaced (i.e., gasoline and diesel). Meanwhile, the production costs varied from 17 to 31€/GJ (i.e., 118–213$/bbleq). Co-processing with VO resulted in the lowest overall performance among the options that were evaluated while co-processing HTLO in the hydrotreatment unit and FPO in the fluid catalytic cracking unit showed the highest potential for CO2 avoidance (69% of refinery CO2 emissions) and reduction in CO2 emissions (84% compared to fossil fuel), respectively. The cost of CO2 emissions avoided for all of the assessed routes was in the range of €99–651 per tCO2.</p

    Efectos de la simulaciĂłn en la comprensiĂłn de la ley de los grandes nĂşmeros

    Get PDF
    En este trabajo se presentan algunos de los resultados obtenidos en una investigación que indagaba por los procesos de razonamiento probabilístico de doce estudiantes entre 12 y 15 años de un colegio público en un municipio en el departamento de Santander (Colombia), alrededor de la Ley de los Grandes Números. Después de vivir una experiencia directa, los estudiantes realizaron simulaciones utilizando Probability Explorer. Los resultados sugieren que para tomar conciencia de la variabilidad en el corto plazo y de la estabilidad a largo plazo de las frecuencias relativas deben realizarse actividades bidireccionales que involucren el espacio muestral y los resultados obtenidos

    Fully integrated CO2 mitigation strategy for an existing refinery: A case study in Colombia

    Get PDF
    The oil and gas industry is responsible for 6% of total global CO2 emissions, from exploration to downstream petrochemical production and account for another 50% when including the use of its products. Thus, this industry has a significant role in realising the target of net “zero” CO2 emissions by 2070, essential to limit global warming to 1.8 °C [2], as introduced under the Paris agreement. Currently, the interactions of an extensive set of individual and combined CO2 mitigation measures along the value chain and over time are poorly assessed. This paper aims to assess a bottom-up CO2 mitigation potential for a complex refinery, including portfolios of combined mitigation options, considering synergies, overlap, and interactions over time for more realistic insight into the costs and constraints of the mitigation portfolio. A total of 40 measures were identified, covering a wide range of technologies such as energy efficiency measures (EEM), carbon capture and storage (CCS), bio-oil co-processing, blue and green hydrogen (BH2, GH2), green electricity import, and electrification of refining processes linked to the transition of the Colombian energy systems. Five deployment pathways were assessed to achieve different specific targets: 1-base case scenario, 2-less effort, 3-maximum CO2 avoidance, 4-INDC, and 5-measures below 200 €/t CO2. Two scenarios (3 and 5) gave the highest GHG emission reduction potentials of 106% and 98% of refining process emissions, respectively. Although significant, it represent only around 13% of the life-cycle emissions when including upstream and final-use emissions of the produced fuels. Bio-oil co-processing options account for around 60% of the mitigation options portfolio, followed by CCS (23%), green electricity (7%) and green H2 (6%). The devised methodological approach in this study can also be applied to assess other energy-intensive industrial complexes and shed light on the bias for estimating CO2 mitigation potentials, especially when combining different mitigation options. This is turn is vital to define optimal transition pathways of industrial complexes

    Fully integrated CO2 mitigation strategy for an existing refinery: A case study in Colombia

    No full text
    The oil and gas industry is responsible for 6% of total global CO2 emissions, from exploration to downstream petrochemical production and account for another 50% when including the use of its products. Thus, this industry has a significant role in realising the target of net “zero” CO2 emissions by 2070, essential to limit global warming to 1.8 °C [2], as introduced under the Paris agreement. Currently, the interactions of an extensive set of individual and combined CO2 mitigation measures along the value chain and over time are poorly assessed. This paper aims to assess a bottom-up CO2 mitigation potential for a complex refinery, including portfolios of combined mitigation options, considering synergies, overlap, and interactions over time for more realistic insight into the costs and constraints of the mitigation portfolio. A total of 40 measures were identified, covering a wide range of technologies such as energy efficiency measures (EEM), carbon capture and storage (CCS), bio-oil co-processing, blue and green hydrogen (BH2, GH2), green electricity import, and electrification of refining processes linked to the transition of the Colombian energy systems. Five deployment pathways were assessed to achieve different specific targets: 1-base case scenario, 2-less effort, 3-maximum CO2 avoidance, 4-INDC, and 5-measures below 200 €/t CO2. Two scenarios (3 and 5) gave the highest GHG emission reduction potentials of 106% and 98% of refining process emissions, respectively. Although significant, it represent only around 13% of the life-cycle emissions when including upstream and final-use emissions of the produced fuels. Bio-oil co-processing options account for around 60% of the mitigation options portfolio, followed by CCS (23%), green electricity (7%) and green H2 (6%). The devised methodological approach in this study can also be applied to assess other energy-intensive industrial complexes and shed light on the bias for estimating CO2 mitigation potentials, especially when combining different mitigation options. This is turn is vital to define optimal transition pathways of industrial complexes

    Assessing bio-oil co-processing routes as CO<sub>2</sub> mitigation strategies in oil refineries

    No full text
    The oil industry needs to reduce CO2 emissions across the entire lifecycle of fossil fuels to meet environmental regulations and societal requirements and to sustain its business. With this goal in mind, this study aims to evaluate the CO2 mitigation potential of several bio-oil co-processing pathways in an oil refinery. Techno-economic analysis was conducted on different pathways and their greenhouse gas (GHG) mitigation potentials were compared. Thirteen pathways with different bio-oils, including vegetable oil (VO), fast pyrolysis oil (FPO), hydro-deoxygenated oil (HDO), catalytic pyrolysis oil (CPO), hydrothermal liquefaction oil (HTLO), and Fischer–Tropsch fuels, were analyzed. However, no single pathway could be presented as the best option. This would depend on the criteria used and the target of the co-processing route. The results obtained indicated that up to 15% of the fossil-fuel output in the refinery could be replaced by biofuel without major changes in the core activities of the refinery. The consequent reduction in CO2 emissions varied from 33% to 84% when compared with pure equivalent fossil fuels replaced (i.e., gasoline and diesel). Meanwhile, the production costs varied from 17 to 31€/GJ (i.e., 118–213$/bbleq). Co-processing with VO resulted in the lowest overall performance among the options that were evaluated while co-processing HTLO in the hydrotreatment unit and FPO in the fluid catalytic cracking unit showed the highest potential for CO2 avoidance (69% of refinery CO2 emissions) and reduction in CO2 emissions (84% compared to fossil fuel), respectively. The cost of CO2 emissions avoided for all of the assessed routes was in the range of €99–651 per tCO2.Energy & Industr

    Fully integrated CO2 mitigation strategy for an existing refinery: A case study in Colombia

    No full text
    The oil and gas industry is responsible for 6% of total global CO2 emissions, from exploration to downstream petrochemical production and account for another 50% when including the use of its products. Thus, this industry has a significant role in realising the target of net “zero” CO2 emissions by 2070, essential to limit global warming to 1.8 °C [2], as introduced under the Paris agreement. Currently, the interactions of an extensive set of individual and combined CO2 mitigation measures along the value chain and over time are poorly assessed. This paper aims to assess a bottom-up CO2 mitigation potential for a complex refinery, including portfolios of combined mitigation options, considering synergies, overlap, and interactions over time for more realistic insight into the costs and constraints of the mitigation portfolio. A total of 40 measures were identified, covering a wide range of technologies such as energy efficiency measures (EEM), carbon capture and storage (CCS), bio-oil co-processing, blue and green hydrogen (BH2, GH2), green electricity import, and electrification of refining processes linked to the transition of the Colombian energy systems. Five deployment pathways were assessed to achieve different specific targets: 1-base case scenario, 2-less effort, 3-maximum CO2 avoidance, 4-INDC, and 5-measures below 200 €/t CO2. Two scenarios (3 and 5) gave the highest GHG emission reduction potentials of 106% and 98% of refining process emissions, respectively. Although significant, it represent only around 13% of the life-cycle emissions when including upstream and final-use emissions of the produced fuels. Bio-oil co-processing options account for around 60% of the mitigation options portfolio, followed by CCS (23%), green electricity (7%) and green H2 (6%). The devised methodological approach in this study can also be applied to assess other energy-intensive industrial complexes and shed light on the bias for estimating CO2 mitigation potentials, especially when combining different mitigation options. This is turn is vital to define optimal transition pathways of industrial complexes

    Fully integrated CO2 mitigation strategy for an existing refinery: A case study in Colombia

    No full text
    The oil and gas industry is responsible for 6% of total global CO2 emissions, from exploration to downstream petrochemical production and account for another 50% when including the use of its products. Thus, this industry has a significant role in realising the target of net “zero” CO2 emissions by 2070, essential to limit global warming to 1.8 °C [2], as introduced under the Paris agreement. Currently, the interactions of an extensive set of individual and combined CO2 mitigation measures along the value chain and over time are poorly assessed. This paper aims to assess a bottom-up CO2 mitigation potential for a complex refinery, including portfolios of combined mitigation options, considering synergies, overlap, and interactions over time for more realistic insight into the costs and constraints of the mitigation portfolio. A total of 40 measures were identified, covering a wide range of technologies such as energy efficiency measures (EEM), carbon capture and storage (CCS), bio-oil co-processing, blue and green hydrogen (BH2, GH2), green electricity import, and electrification of refining processes linked to the transition of the Colombian energy systems. Five deployment pathways were assessed to achieve different specific targets: 1-base case scenario, 2-less effort, 3-maximum CO2 avoidance, 4-INDC, and 5-measures below 200 €/t CO2. Two scenarios (3 and 5) gave the highest GHG emission reduction potentials of 106% and 98% of refining process emissions, respectively. Although significant, it represent only around 13% of the life-cycle emissions when including upstream and final-use emissions of the produced fuels. Bio-oil co-processing options account for around 60% of the mitigation options portfolio, followed by CCS (23%), green electricity (7%) and green H2 (6%). The devised methodological approach in this study can also be applied to assess other energy-intensive industrial complexes and shed light on the bias for estimating CO2 mitigation potentials, especially when combining different mitigation options. This is turn is vital to define optimal transition pathways of industrial complexes
    corecore