13,967 research outputs found
Chiral Sigma Model with Pion Mean Field in Finite Nuclei
The properties of infinite matter and finite nuclei are studied by using the
chiral sigma model in the framework of the relativistic mean field theory. We
reconstruct an extended chiral sigma model in which the omega meson mass is
generated dynamically by the sigma condensation in the vacuum in the same way
as the nucleon mass. All the parameters of chiral sigma model are essentially
fixed from the hadron properties in the free space. In nuclear matter, the
saturation property comes out right, but the incompressibility is too large and
the scalar and vector potentials are about a half of the phenomenological ones,
respectively. This fact is reflected to the properties of finite nuclei. We
calculate N = Z even-even mass nuclei between N = 16 and N = 34. The extended
chiral sigma model without the pion mean field leads to the result that the
magic number appears at N = 18 instead of N = 20 and the magic number does not
appear at N = 28 due to the above mentioned nuclear matter properties. The
latter problem, however, could be removed by the introduction of the finite
pion mean field with the appearance of the magic number at N = 28. We find that
the energy differences between the spin-orbit partners are reproduced by the
finite pion mean field which is completely a different mechanism from the
standard spin-orbit interaction.Comment: 19 pages, 9 figures. Prog. Theor. Phys. to be publishe
Magneto-hydrodynamic Simulations of a Jet Drilling an HI Cloud: Shock Induced Formation of Molecular Clouds and Jet Breakup
The formation mechanism of the jet-aligned CO clouds found by NANTEN CO
observations is studied by magnetohydrodynamical (MHD) simulations taking into
account the cooling of the interstellar medium. Motivated by the association of
the CO clouds with the enhancement of HI gas density, we carried out MHD
simulations of the propagation of a supersonic jet injected into the dense HI
gas. We found that the HI gas compressed by the bow shock ahead of the jet is
cooled down by growth of the cooling instability triggered by the density
enhancement. As a result, cold dense sheath is formed around the interface
between the jet and the HI gas. The radial speed of the cold, dense gas in the
sheath is a few km/s almost independent of the jet speed. Molecular clouds can
be formed in this region. Since the dense sheath wrapping the jet reflects
waves generated in the cocoon, the jet is strongly perturbed by the vortices of
the warm gas in the cocoon, which breaks up the jet and forms a secondary shock
in the HI-cavity drilled by the jet. The particle acceleration at the shock can
be the origin of radio and X-ray filaments observed near the eastern edge of
W50 nebula surrounding the galactic jet source SS433.Comment: 30 pages, 16 figure
Relativistic Hartree approach with exact treatment of vacuum polarization for finite nuclei
We study the relativistic Hartree approach with the exact treatment of the
vacuum polarization in the Walecka sigma-omega model. The contribution from the
vacuum polarization of nucleon-antinucleon field to the source term of the
meson fields is evaluated by performing the energy integrals of the Dirac Green
function along the imaginary axis. With the present method of the vacuum
polarization in finite system, the total binding energies and charge radii of
16O and 40Ca can be reproduced. On the other hand, the level-splittings in the
single-particle level, in particular the spin-orbit splittings, are not
described nicely because the inclusion of vacuum effect provides a large
effective mass with small meson fields. We also show that the derivative
expansion of the effective action which has been used to calculate the vacuum
contribution for finite nuclei gives a fairly good approximation.Comment: 15 pages, 8 figure
Extreme ion heating in the dayside ionosphere in response to the arrival of a coronal mass ejection on 12 March 2012
Simultaneous measurements of the polar ionosphere with the European Incoherent Scatter (EISCAT) ultra high frequency (UHF) radar
at Tromsø and the EISCAT Svalbard radar (ESR) at Longyearbyen were made
during 07:00–12:00 UT on 12 March 2012. During the period, the Advanced Composition Explorer (ACE) spacecraft
observed changes in the solar wind which were due to the arrival of
coronal mass ejection (CME) effects associated with the 10 March M8.4 X-ray
event. The solar wind showed two-step variations which caused strong
ionospheric heating. First, the arrival of shock structures in the solar wind
with enhancements of density and velocity, and a negative interplanetary magnetic field (IMF)-<i>B<sub>z</sub></i> component
caused strong ionospheric heating around Longyearbyen; the ion temperature at
about 300 km increased from about 1100 to 3400 K over Longyearbyen while
that over Tromsø increased from about 1050 to 1200 K. After the passage
of the shock structures, the IMF-<i>B<sub>z</sub></i> component showed positive values and
the solar wind speed and density also decreased. The second strong
ionospheric heating occurred after the IMF-<i>B<sub>z</sub></i> component showed
negative values again; the negative values lasted for more than
1.5 h. This solar wind variation caused stronger heating of the ionosphere in
the lower latitudes than higher latitudes, suggesting expansion of the auroral
oval/heating region to the lower latitude region. This study shows an example
of the CME-induced dayside ionospheric heating: a short-duration and very large rise in the ion temperature which was closely related to the polar
cap size and polar cap potential variations as a result of interaction
between the solar wind and the magnetosphere
Recommended from our members
Effects of biomass burning, lightning, and convection on O-3, CO, and NOy over the tropical Pacific and Australia in August-October 1998 and 1999
Significance of myocardial tenascin-C expression in left ventricular remodelling and long-term outcome in patients with dilated cardiomyopathy
Aim Dilated cardiomyopathy (DCM) has a variety of causes, and no useful approach to predict left ventricular (LV) remodelling and long-term outcome has yet been established. Myocardial tenascin-C (TNC) is known to appear under pathological conditions, possibly to regulate cardiac remodelling. The aim of this study was to clarify the significance of myocardial TNC expression in LV remodelling and the long-term outcome in DCM. Methods and results One hundred and twenty-three consecutive DCM patients who underwent endomyocardial biopsy for initial diagnosis were studied. Expression of TNC in biopsy sections was analysed immunohistochemically to quantify the ratio of the TNC-positive area to the whole myocardial tissue area (TNC area). Clinical parameters associated with TNC area were investigated. The patients were divided into two groups based on receiver operating characteristic analysis of TNC area to predict death: high TNC group with TNC area ≥2.3% (22 patients) and low TNC group with TNC area <2.3% (101 patients). High TNC was associated with diabetes mellitus. Comparing echocardiographic findings between before and 9 months after endomyocardial biopsy, the low TNC group was associated with decreased LV end-diastolic diameter and increased LV ejection fraction, whereas the high TNC group was not. Survival analysis revealed a worse outcome in the high TNC group than in the low TNC group (P < 0.001). Multivariable Cox regression analysis revealed that TNC area was independently associated with poor outcome (HR = 1.347, P = 0.032). Conclusions Increased myocardial TNC expression was associated with worse LV remodeling and long-term outcome in DCM
Critical enhancement of thermopower in a chemically tuned polar semimetal MoTe
Ferroelectrics with spontaneous electric polarization play an essential role
in today's device engineering, such as capacitors and memories. Their physical
properties are further enriched by suppressing the long-range polar order, as
is exemplified by quantum paraelectrics with giant piezoelectric and dielectric
responses at low temperatures. Likewise in metals, a polar lattice distortion
has been theoretically predicted to give rise to various unusual physical
properties. So far, however, a "ferroelectric"-like transition in metals has
seldom been controlled and hence its possible impacts on transport phenomena
remain unexplored. Here we report the discovery of anomalous enhancement of
thermopower near the critical region between the polar and nonpolar metallic
phases in 1T'-MoNbTe with a chemically tunable polar
transition. It is unveiled from the first-principles calculations and
magnetotransport measurements that charge transport with strongly
energy-dependent scattering rate critically evolves towards the boundary to the
nonpolar phase, resulting in large cryogenic thermopower. Such a significant
influence of the structural instability on transport phenomena might arise from
the fluctuating or heterogeneous polar metallic states, which would pave a
novel route to improving thermoelectric efficiency.Comment: 26 pages, 4 figure
- …