47 research outputs found

    Identification of cuproptosis-related biomarkers and analysis of immune infiltration in allograft lung ischemia-reperfusion injury

    Get PDF
    Background: Allograft lung ischemia-reperfusion injury (ALIRI) is a major cause of early primary graft dysfunction and poor long-term survival after lung transplantation (LTx); however, its pathogenesis has not been fully elucidated. Cell death is a mechanism underlying ALIRI. Cuproptosis is a recently discovered form of programmed cell death. To date, no studies have been conducted on the mechanisms by which cuproptosis-related genes (CRGs) regulate ALIRI. Therefore, we explored the potential biomarkers related to cuproptosis to provide new insights into the treatment of ALIRI.Materials and methods: Datasets containing pre- and post-LTx lung biopsy samples and CRGs were obtained from the GEO database and previous studies. We identified differentially expressed CRGs (DE-CRGs) and performed functional analyses. Biomarker genes were selected using three machine learning algorithms. The ROC curve and logistic regression model (LRM) of these biomarkers were constructed. CIBERSORT was used to calculate the number of infiltrating immune cells pre- and post-LTx, and the correlation between these biomarkers and immune cells was analyzed. A competing endogenous RNA network was constructed using these biomarkers. Finally, the biomarkers were verified in a validation set and a rat LTx model using qRT-PCR and Western blotting.Results: Fifteen DE-CRGs were identified. GO analysis revealed that DE-CRGs were significantly enriched in the mitochondrial acetyl-CoA biosynthetic process from pyruvate, protein lipoylation, the tricarboxylic acid (TCA) cycle, and copper-transporting ATPase activity. KEGG enrichment analysis showed that the DE-CRGs were mainly enriched in metabolic pathways, carbon metabolism, and the TCA cycle. NFE2L2, NLRP3, LIPT1, and MTF1 were identified as potential biomarker genes. The AUC of the ROC curve for each biomarker was greater than 0.8, and the LRM provided an excellent classifier with an AUC of 0.96. These biomarkers were validated in another dataset and a rat LTx model, which exhibited good performance. In the CIBERSORT analysis, differentially expressed immune cells were identified, and the biomarkers were associated with the immune cells.Conclusion:NFE2L2, NLRP3, LIPT1, and MTF1 may serve as predictors of cuproptosis and play an important role in the pathogenesis of cuproptosis in ALIRI

    Using Maxwell’s Theory to model and quantify the fracture evolution of cyclothymic deposition phosphate rock

    Get PDF
    The evolution and stability of fracturing in the cyclothymic deposition of phosphate rocks are strongly affected by the viscoelasticity and structural form of the rock-forming minerals. Presently, there is no standardized method that has been widely accepted to accurately quantify the elastic-plastic deformation and fracturing of such striped structural rock nor reflect the role of the different lithogenous minerals in phosphate rocks when subjected to viscoelastic strain loading. In this study, integrated mathematical equations were formulated for modelling the mechanical and fracture behaviour of cyclothymic deposition in structured phosphate rocks. These constitutive equations were developed based on Maxwell’s Theory after the elastic modulus and damping coefficient of the rock-forming mineral from the mechanical testing were substituted into the derived-equations. In these new models, the apatite stripes and dolomite stripes were incorporated into the transverse isotropic model through the analysis of structural characteristics of the phosphate rock. Through experimental validation, the response curves of the creep and stress relaxation tests were found to be consistent with the deformation curves generated by modelling using the mathematical equations. Overall, the formulated model along with the corresponding equations was found to exhibit good applicability properties to describe phosphate’s mechanical and fracture behaviour under low horizontal compressive stresses. In the study, the creep mechanism in phosphate rocks were satisfactorily analysed from the angles of microscopic morphology, cracks evolution, and inter-crystalline strength. The hard brittle apatite was found to be surrounded and separated by high creep variant dolomite. Furthermore, the analysis showed that dolomite crystals possessing high creep properties dominated the distribution and evolution of secondary structures in the phosphate rock, under the condition of long-term low-stress loading

    Glutathione de Novo Synthesis but Not Recycling Process Coordinates with Glutamine Catabolism to Control Redox Homeostasis and Directs Murine T Cell Differentiation

    Get PDF
    Upon antigen stimulation, T lymphocytes undergo dramatic changes in metabolism to fulfill the bioenergetic, biosynthetic and redox demands of proliferation and differentiation. Glutathione (GSH) plays an essential role in controlling redox balance and cell fate. While GSH can be recycled from Glutathione disulfide (GSSG), the inhibition of this recycling pathway does not impact GSH content and murine T cell fate. By contrast, the inhibition of the de novo synthesis of GSH, by deleting either the catalytic (Gclc) or the modifier (Gclm) subunit of glutamate–cysteine ligase (Gcl), dampens intracellular GSH, increases ROS, and impact T cell differentiation. Moreover, the inhibition of GSH de novo synthesis dampened the pathological progression of experimental autoimmune encephalomyelitis (EAE). We further reveal that glutamine provides essential precursors for GSH biosynthesis. Our findings suggest that glutamine catabolism fuels de novo synthesis of GSH and directs the lineage choice in T cells

    Development and Application of a Crossed Multi-Arch Greenhouse in Tropical China

    No full text
    Deep analysis and demonstration of the developed crossed multi-arch greenhouse were conducted from the perspectives of conceptual design, architectural and structural design, functional design, loading parameters, and structural internal forces. The results show that the crossed multi-arch greenhouse combines the ventilation area between the floor-standing round-arch greenhouse and the unsuitable operation area under the arch bars into one to form a multi-span crossed arch structure with good ventilation and heat dissipation, land savings, and fine mechanical behaviors. The main arch structure uses 32.4% less steel and 25% less foundation volume than the control greenhouse under the same load, which can save about CNY 10,184.00/667m2 of investment according to the current cost level. In the meantime, ventilation simulation analysis of the developed crossed multi-arch greenhouse was carried out using the software Design Builder. A comparison shows that, under the condition of no wind and breeze (1 m/s) in summer, the setting of the ventilation channel has obvious advantages for the heat dissipation of the greenhouse, and the average temperature is about 2 °C lower than that of the greenhouse without a ventilation channel; under the breeze condition, the temperature in the crossed multi-arch greenhouse is more evenly distributed than that of an ordinary round-arch greenhouse with ventilation channels. Considering the greenhouse function, building cost, using effect, and other evaluation factors, the crossed multi-arch greenhouse can meet the production environment requirements of tropical coastal areas (rain protection, sunshade, and ventilation), with obvious structural advantages, good typhoon resistance, and low construction costs, which is a preferable choice of greenhouse type

    Study on Pounding Response of Adjacent Inelastic SDOF Structures Based on Dimensional Analysis

    No full text
    The dimensional analysis method is applied to study the pounding response of two inelastic single-degree-of-freedom (SDOF) structures under simplified earthquake excitation. The improved Kelvin pounding model is used to simulate the force and deformation of the collider during the contact process. Using bilinear interstory resistance model to simulate the inelastic characteristics of SDOF structures, the expression of dimensionless pounding force and the dimensionless equation of motion during the pounding process are deduced. When dimensionless parameters are used to represent the colliding equation of adjacent inelastic SDOF structures, the variables affecting the pounding response of the adjacent structures are reduced from 14 to 11, which can clearly reflect the rules during the pounding process. The correctness and superiority of the improved Kelvin model are verified by comparing the pounding responses between the improved Kelvin model and Kelvin model. The pounding response of the two inelastic SDOF structures with improved Kelvin model is illustrated in the form of spectra, and the self-similarity of pounding response of the two inelastic SDOF structures is revealed. The effects of structural parameters on the pounding response are analyzed. The results show that the effects of mass ratio, frequency ratio, and initial spacing between the adjacent inelastic SDOF structures on the pounding response of the left-side structure (with smaller mass and stiffness) are closely related to the division of spectral regions. For the right-side structure with larger mass and stiffness, the amplification of pounding on structural response increases with the increase of mass ratio Πm and decreases with the increase of frequency ratio μ and structural spacing Πd

    Two-Step Solid State Synthesis of Medium Entropy LiNi0.5Mn1.5O4 Cathode with Enhanced Electrochemical Performance

    No full text
    Solid state reaction is widely used in the synthesis of electrode materials, due to its low cost and good scalability. However, the traditional solid-state reaction is not suitable for the synthesis of materials with multiple elements, such as high entropy or medium entropy materials, due to the poor homogeneity of raw material mixing. Here, we prepared multi-element doped LiNi0.5Mn1.5O4 (medium entropy) cathode material by two step solid state reaction. X-ray diffraction and Raman image show that the homogeneity of multi-element doped LiNi0.5Mn1.5O4 cathode has been greatly improved with this two-step method. As a result, the electrochemical performance is greatly improved, comparing to traditional solid-state reaction. First, the specific capacity at 0.1 C is increased from 126 mAh/g to 137 mAh/g. With a high current density of 10 C, the specific capacity is even increased from 64 mAh/g to 89 mAh/g with this two-step method. Second, the cycle stability is enhanced, with capacity retention of 86% after cycling at 1 C for 500 times (vs. 71% for the one-step method)

    Two-Step Solid State Synthesis of Medium Entropy LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> Cathode with Enhanced Electrochemical Performance

    No full text
    Solid state reaction is widely used in the synthesis of electrode materials, due to its low cost and good scalability. However, the traditional solid-state reaction is not suitable for the synthesis of materials with multiple elements, such as high entropy or medium entropy materials, due to the poor homogeneity of raw material mixing. Here, we prepared multi-element doped LiNi0.5Mn1.5O4 (medium entropy) cathode material by two step solid state reaction. X-ray diffraction and Raman image show that the homogeneity of multi-element doped LiNi0.5Mn1.5O4 cathode has been greatly improved with this two-step method. As a result, the electrochemical performance is greatly improved, comparing to traditional solid-state reaction. First, the specific capacity at 0.1 C is increased from 126 mAh/g to 137 mAh/g. With a high current density of 10 C, the specific capacity is even increased from 64 mAh/g to 89 mAh/g with this two-step method. Second, the cycle stability is enhanced, with capacity retention of 86% after cycling at 1 C for 500 times (vs. 71% for the one-step method)

    Value-Added Use of Waste PET in Rubberized Asphalt Materials for Sustainable Pavement

    No full text
    Waste poly(ethylene terephthalate) (PET) drinking bottles and end-of-life scrap rubber tires are common municipal solid wastes discarded and produced every day, which are usually disposed of in landfills and stockpiles, occupying a great quantity of land and causing serious environmental issues. This study aims to first turn waste PET into two value-added derived additives under the chemical treatment of two amines, namely triethylenetetramine (TETA) and ethanolamine (EA), respectively, and then adopt them in association with crumb rubber (CR) to modify virgin bitumen for preparing various rubberized asphalt mixtures. Subsequently, the high- and low-temperature properties of the rubberized binder modified by PET additives (PET-TETA and PET-EA) were comparatively characterized through dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests, while the rutting resistance, fatigue resistance, and dynamic modulus of the further fabricated mixtures were evaluated and validated through mixture tests. The results obtained indicate that 2 wt.% PET-TETA and PET-EA contribute to increase the rutting failure temperature of asphalt rubber from 82.2 &deg;C to 85.5 &deg;C and 84.2 &deg;C, respectively, retaining the high grade of PG 82; the low-temperature grade of asphalt rubber slightly decreased from PG-28 to PG-22 as the additive was added; the rut depth slightly changed from 3.10 mm to nearly 3.70 mm; and PET-TETA exhibits the potential to be capable of extending the fatigue life of asphalt rubber in contrast with PET-EA at different stress levels within 450 kPa. Based on the findings of this study, the developed recycling approach is considered to be applicable to not only alleviate the environmental concerns caused by the landfills and stockpiles of those wastes but also make them valuable for building more durable pavement

    Hydrolytic synthesis of titanium oxide insulation layer and its effect on powder core

    No full text
    Optimizing insulation technique plays a vital role in developing high performance magnetic powder core. Uniform dense titanium dioxide insulation layer was successfully coated on atomized Fe-Si-Al powder through hydrolysis of tetrabutyl titanate and the effect of water content on insulation quality was systematically investigated. The influences of titanium oxide insulation layer on electromagnetic properties of corresponding powder cores were also discussed. The results show that when the mass of water is increased from 10% to 40% of Fe-Si-Al powder, the insulation layer on particle surface first grows thicker and then becomes loose. High water content favors quick hydrolysis and condensation, while too large volumes of water leads to excessively high hydrolysis rate, which is adverse to the uniform growth and crystallization of titanium dioxide insulation layer. It is proven that uniform and dense insulation layer would contribute to the increase of resistivity under the premise of high density of powder core, which is conducive to the suppression of eddy current and frequency stability of permeability. When the mass of water is 20% of Fe-Si-Al powder, the prepared corresponding powder core has the optimal overall performance, the permeability is as high as 82, the resistivity is up to 1022.35 kΩ·cm and the core loss is as low as 77.63 mW/cm3 (at 100 kHz and 50 mT)
    corecore