20 research outputs found

    The role played by carbonate cementation in controlling reservoir quality of the Triassic Skagerrak Formation, Norway.

    Get PDF
    Anomalously high porosities up to 30% at burial depth of >3000 m along with varying amounts and types of carbonate cements occur in the fluvial channel sandstone facies of the Triassic Skagerrak Formation, Central Graben, Norway. However, porosities of the Skagerrak Formation are lower in the Norwegian sector than in the UK sector. In this study, petrographic analysis, core examination, scanning electron microscopy, elemental mapping, carbon and oxygen isotope, fluid inclusion and microgeometry analysis are performed to determine the diagenesis and direct influence on reservoir quality, with particular focus on the role played by carbonate cementation. The sandstones are mainly fine-grained lithic-arkosic to sub-arkosic arenites and display a wide range of intergranular volumes (2.3%ā€“43.7% with an average of 23.6%). Porosity loss is mainly due to compaction (av. 26.6%) with minor contribution from cementation (av. 12.1%). The carbonate cements are patchy in distribution (from trace to 20.7%) and appear as various types e.g. calcretes (i.e. calcareous concreted gravels), poikilitic sparite and sparry ferroan dolomite, and euhedral or/and aggregated ankerite/ferroan dolomite crystals. This study highlights the association of carbonate precipitation with the remobilisation of carbonate from intra-Skagerrak calcretes during early burial stage i.e. <500 m. During deeper burial, compaction is inhibited by carbonate cements, resulting high intergranular volume of up to 32% and 29% for fine- and medium-grained sandstones, respectively. Carbonate cement dissolution probably results from both meteoric water flow with CO2 during shallow burial, and organic CO2 and carboxylic acid during deep burial. The maximum intergranular volume enhanced by dissolution of early carbonate cements is calculated to 8% and 5% for fine- and medium-grained sandstones, respectively. Compaction continues to exert influence after dissolution of carbonate cements, which results in a loss of āˆ¼6% intergranular volume for fine- and medium-grained sandstones. Reservoir quality of the Norwegian sector is poorer than that of the UK sector due to a lower coverage of clay mineral coats e.g. chlorite, later and deeper onset of pore fluid overpressure, lower solubility of carbonate compared to halite, and a higher matrix content

    The Beneficial Effects of Bisphosphonate-enoxacin on Cortical Bone Mass and Strength in Ovariectomized Rats

    Get PDF
    Osteoporosis is a major age-related bone disease characterized by low bone mineral density and a high risk of fractures. Bisphosphonates are considered as effective agents treating osteoporosis. However, long-term use of bisphosphonates is associated with some serious side effects, which limits the widespread clinical use of bisphosphonates. Here, we demonstrate a novel type of bone-targeting anti-resorptive agent, bisphosphonate-enoxacin (BE). In this study, ovariectomized rat model was established and treated with PBS, zoledronate (50 Ī¼g/kg) and different dose of BE (5 mg/kg and 10 mg/kg), respectively. The rats subjected to sham-operation and PBS treatment were considered as control group. Then, micro-computed tomography scanning, biomechanical tests, nano-indentation test and Raman analysis were used to compare the effects of zoledronate and BE on cortical bone mass, strength, and composition in ovariectomized rats. We found that both zoledronate and BE were beneficial to cortical bone strength. Three-point bending and nano-indentation tests showed that zoledronate- and BE-treated groups had superior general and local biomechanical properties compared to the ovariectomized groups. Interestingly, it seemed that BE-treated group got a better biomechanical property than the zoledronate-treated group. Also, BE-treated group showed significantly increased proteoglycan content compared with the zoledronate-treated group. We hypothesized that the increased bone strength and biomechanical properties was due to altered bone composition after treatment with BE. BE, a new bone-targeting agent, may be considered a more suitable anti-resorptive agent to treat osteoporosis and other bone diseases associated with decreased bone mass

    Effects of Ultrasonic Bending Vibration Introduced by an L-Shaped Ultrasonic Rod on the Microstructure and Properties of a 1060 Aluminum Alloy Strip Formed by Twin-Roll Casting

    No full text
    In order to achieve the industrial application of ultrasonic energy in the continuous casting and rolling production of aluminum alloy, a new type of L-shaped ultrasonic rod was used to introduce an ultrasonic bending vibration into the aluminum melt in the launder during the horizontal twin-roll continuous casting and rolling process of a 1060 aluminum alloy. The effects of the ultrasonic bending vibration on the microstructure and properties of the 1060 aluminum alloy cast rolling strip and its subsequent cold rolling strip were studied experimentally, and the effect of the ultrasonic-assisted refining with different amounts of Al-Ti-B refiner was explored. The results show that under the same addition amount of Al-Ti-B refiner, the ultrasonic bending vibration can refine the grains of the cast rolling strip, make the distribution of precipitates more uniform, reduce the slag inclusion defects, and improve the mechanical properties to a certain extent. The microstructure and properties of the ultrasonic cast rolling strip with 0.18 wt% Al-Ti-B refiner or 0.12 wt% Al-Ti-B refiner are better than those of the conventional cast rolling strip, but the microstructure and properties of the ultrasonic cast rolling strip with 0.09 wt% Al-Ti-B refiner are slightly worse than those of the conventional cast rolling strip. Moreover, after cold rolling, the effect of the ultrasonic bending vibration on the improvement of the microstructure and properties of the aluminum alloy strip is inherited. A comprehensive analysis shows that the use of ultrasonic energy in this paper cannot completely replace the effect of the Al-Ti-B refiner, but it can reduce the addition amount of the Al-Ti-B refiner by 1/3

    Origin and Distribution of Carbonate Cement in Tight Sandstones: The Upper Triassic Yanchang Formation Chang 8 Oil Layer in West Ordos Basin, China

    No full text
    Two generations of carbonate cement as Type I (microcrystalline calcite and dolomite) and Type II (mainly Fe-calcite and Fe-dolomite) are recognized in Chang 8 sandstones, Ordos basin. Carbonate cement in Chang 8 sandstones is closely related to the dissolved carbon from thermal maturation of organic matters. Carbonate cement in the loosely packed framework grains precipitated shortly after deposition, and late-stage ferroan calcite and ferroan dolomite formed with progressive burial. The early diagenetic carbonate cement is partially to completely replaced by late-stage ferroan calcite and ferroan dolomite. Carbonate cement is much more commonly observed in sand bodies adjacent to Chang 7 source rocks. With increasing distance from the Chang 7 oil layers, the carbonate cement content gradually decreases. However, some tight carbonate cemented zones also occur at the sandstone-mudstone interfaces. Dissolution of Ca-feldspars by organic acids-rich fluids, together with clay mineral transformations such as illitization of smectite, would provide Ca2+ and Mg2+ ions for carbonate cementation. Organic acids and CO2 rich fluids would charge into the reservoirs with the hydrocarbons, and when the CO2 and acids were buffered by the framework grain dissolution, carbonate cement would precipitate with a decrease in CO2 concentration

    Epigenetic landscape in PPARĪ³2 in the enhancement of adipogenesis of mouse osteoporotic bone marrow stromal cell

    Get PDF
    AbstractOsteoporosis is one of the most prevalent skeletal system diseases; yet, its pathophysiological mechanisms remain elusive. Adipocytes accumulate remarkably in the bone marrow of osteoporotic patients. The potential processes and molecular mechanisms underlying adipogenesis in osteoporotic BMSCs have attracted significant attention as adipocytes and osteoblasts share common precursor cells. Some environmental factors influence bone mass through epigenetic mechanisms; however, the role of epigenetic modifications in osteoporosis is just beginning to be investigated, and there is still little data regarding their involvement. In the current study, we investigated how epigenetic modifications, including DNA methylation and histone modifications, lead to adipogenesis in the bone marrow during osteoporosis. A glucocorticoid-induced osteoporosis (GIO) mouse model was established, and BMSCs were isolated from the bone marrow. Compared with normal BMSCs, osteoporotic BMSCs had significantly increased adipogenesis potential and decreased osteogenesis potential. In osteoporotic BMSCs, PPARĪ³2 regulatory region DNA hypo-methylation, histone 3 and 4 hyper-acetylation and H3K9 hypo-di-methylation were observed. These epigenetic modifications were involved not only in PPARĪ³2 expression but also in osteoporotic BMSC adipogenic differentiation potential. We also found that Wnt/Ī²-catenin signal played an important role in the establishment and maintenance of epigenetic modifications at PPARĪ³2 promoter in osteoporotic BMSCs. Finally, we inhibited adipogenesis and rescued osteogenesis of osteoporotic BMSCs by modulating those epigenetic modifications. Our study provides a deeper insight into the pathophysiology of osteoporosis and identifies PPARĪ³2 as a new target for osteoporosis therapy based on epigenetic mechanisms

    The role played by carbonate cementation in controlling reservoir quality of the Triassic Skagerrak Formation, Norway

    Get PDF
    Anomalously high porosities up to 30% at burial depth of >3000 m along with varying amounts and types of carbonate cements occur in the fluvial channel sandstone facies of the Triassic Skagerrak Formation, Central Graben, Norway. However, porosities of the Skagerrak Formation are lower in the Norwegian sector than in the UK sector. In this study, petrographic analysis, core examination, scanning electron microscopy, elemental mapping, carbon and oxygen isotope, fluid inclusion and microgeometry analysis are performed to determine the diagenesis and direct influence on reservoir quality, with particular focus on the role played by carbonate cementation. The sandstones are mainly fine-grained lithic-arkosic to sub-arkosic arenites and display a wide range of intergranular volumes (2.3%ā€“43.7% with an average of 23.6%). Porosity loss is mainly due to compaction (av. 26.6%) with minor contribution from cementation (av. 12.1%). The carbonate cements are patchy in distribution (from trace to 20.7%) and appear as various types e.g. calcretes (i.e. calcareous concreted gravels), poikilitic sparite and sparry ferroan dolomite, and euhedral or/and aggregated ankerite/ferroan dolomite crystals. This study highlights the association of carbonate precipitation with the remobilisation of carbonate from intra-Skagerrak calcretes during early burial stage i.e. <500 m. During deeper burial, compaction is inhibited by carbonate cements, resulting high intergranular volume of up to 32% and 29% for fine- and medium-grained sandstones, respectively. Carbonate cement dissolution probably results from both meteoric water flow with CO2 during shallow burial, and organic CO2 and carboxylic acid during deep burial. The maximum intergranular volume enhanced by dissolution of early carbonate cements is calculated to 8% and 5% for fine- and medium-grained sandstones, respectively. Compaction continues to exert influence after dissolution of carbonate cements, which results in a loss of āˆ¼6% intergranular volume for fine- and medium-grained sandstones. Reservoir quality of the Norwegian sector is poorer than that of the UK sector due to a lower coverage of clay mineral coats e.g. chlorite, later and deeper onset of pore fluid overpressure, lower solubility of carbonate compared to halite, and a higher matrix content
    corecore