21 research outputs found

    Effects of Charged Martian Dust on Martian Atmosphere Remote Sensing

    No full text
    In this paper, the extinction property and optical depth of charged Martian dust at infrared band 3 THz–300 THz are studied using the Mie scattering theory. It is found that the extinction coefficients of Martian atmospheric dust and the dust optical depth (DOD) of the Martian atmosphere can be amplified significantly as the dust particles are charged. This extinction amplification has a peak, called amplification resonance, which shifts toward the upper left of the r-q parameter plane with increasing frequency. Here, r denotes the particle radius and q denotes the particle’s total net charge. The amplification of the Martian DOD is more significant at high altitudes than at low altitudes because the particles at high altitudes are smaller. For example, at an altitude of 30–50 km, the dust optical depth at 30 THz can be increased by 60–200%. However, at 3 THz–10 THz, the DOD at the near surface altitude (0–10 km) can still be enhanced by ~80%. This implies that by treating the Martian dust as uncharged particles, the dust density constructed from the Martian DOD data might be overestimated. The estimation error of the dust density of the Martin atmosphere may be reduced by counting the enhancement of the DOD that is caused by charged dust

    Effects of Charged Martian Dust on Martian Atmosphere Remote Sensing

    No full text
    In this paper, the extinction property and optical depth of charged Martian dust at infrared band 3 THz–300 THz are studied using the Mie scattering theory. It is found that the extinction coefficients of Martian atmospheric dust and the dust optical depth (DOD) of the Martian atmosphere can be amplified significantly as the dust particles are charged. This extinction amplification has a peak, called amplification resonance, which shifts toward the upper left of the r-q parameter plane with increasing frequency. Here, r denotes the particle radius and q denotes the particle’s total net charge. The amplification of the Martian DOD is more significant at high altitudes than at low altitudes because the particles at high altitudes are smaller. For example, at an altitude of 30–50 km, the dust optical depth at 30 THz can be increased by 60–200%. However, at 3 THz–10 THz, the DOD at the near surface altitude (0–10 km) can still be enhanced by ~80%. This implies that by treating the Martian dust as uncharged particles, the dust density constructed from the Martian DOD data might be overestimated. The estimation error of the dust density of the Martin atmosphere may be reduced by counting the enhancement of the DOD that is caused by charged dust

    Investigation into the Influence of Parallel Offset Wear on Stirling Engine Piston Rod Oil-Free Lubrication Seal

    No full text
    The oil-free lubrication seal of a piston rod plays an important role in the application of a Stirling engine. Parallel offset in a piston rod ruins the symmetry of the seal and affects the sealing performance when the seal is worn. In this paper, based on a motion analysis and the finite element method, a three-dimensional model of the Cap-seal was established, and its performance was numerically and experimentally investigated. The results show that parallel offset of the piston rod increases the possibility of seal damage and has no obvious effect on leakage. Under high pressures and low pre-compression ratios, the Cap-seal shows a good sealing capability and exhibits a higher propensity for mechanical damage. A good agreement was obtained between the numerical and experimental results. This study offers guidelines regarding the design and application of oil-free lubrication seals for a Stirling piston rod

    Investigation into the Influence of Parallel Offset Wear on Stirling Engine Piston Rod Oil-Free Lubrication Seal

    No full text
    The oil-free lubrication seal of a piston rod plays an important role in the application of a Stirling engine. Parallel offset in a piston rod ruins the symmetry of the seal and affects the sealing performance when the seal is worn. In this paper, based on a motion analysis and the finite element method, a three-dimensional model of the Cap-seal was established, and its performance was numerically and experimentally investigated. The results show that parallel offset of the piston rod increases the possibility of seal damage and has no obvious effect on leakage. Under high pressures and low pre-compression ratios, the Cap-seal shows a good sealing capability and exhibits a higher propensity for mechanical damage. A good agreement was obtained between the numerical and experimental results. This study offers guidelines regarding the design and application of oil-free lubrication seals for a Stirling piston rod

    Genetic mapping reveals a marker for yellow skin in watermelon (Citrullus lanatus L.).

    No full text
    As a diverse species, watermelon [Citrullus lanatus (Thunb.) Matsum. &Nakai var. lanatus] has different kinds of fruit sizes, shapes, flesh colors and skin colors. Skin color is among the major objectives for breeding. Yellow skin is an important trait in watermelon, but the underlying genetic mechanism is unknown. In this study, we identified a locus for yellow skin through BSA-seq and GWAS. A segregation analysis in F2 and BC1 populations derived from a cross of two inbred lines '94E1'(yellow skin) and 'Qingfeng'(green skin) suggested that skin color is a qualitative trait. BSA-seq mapping confirmed the locus in the F2 population, which was detected on chromosome 4 by GWAS among 330 varieties. Several major markers, namely, 15 CAPS markers, 6 SSR markers and 2 SNP markers, were designed to delimit the region to 59.8 kb region on chromosome 4. Utilizing the two populations consisting of 10 yellow and 10 green skin watermelons, we found a tightly linked functional SNP marker for the yellow skin phenotype. The application of this marker as a selection tool in breeding programs will help to improve the breeder's ability to make selections at early stages of growth, thus accelerating the breeding program

    Construction of A High-Density Genetic Map and Mapping of Fruit Traits in Watermelon (Citrullus Lanatus L.) Based on Whole-Genome Resequencing

    No full text
    Watermelon (Citrullus lanatus L.) is an important horticultural crop that is grown worldwide and has a high economic value. To dissect the loci associated with important horticultural traits and to analyze the genetic and genomic information of this species, a high-density genetic map was constructed based on whole-genome resequencing (WGR), a powerful high-resolution method for single-nucleotide polymorphism (SNP) marker development, genetic map construction, and gene mapping. Resequencing of both parental lines and 126 recombinant inbred lines (RIL) resulted in the detection of 178,762 single-nucleotide polymorphism (SNP) markers in the parental lines at a sequencing depth greater than four-fold. Additionally, 2132 recombination bin markers comprising 103,029 SNP markers were mapped onto 11 linkage groups (LGs). Substantially more SNP markers were mapped to the genetic map compared with other recent studies. The total length of the linkage map was 1508.94 cM, with an average distance of 0.74 cM between adjacent bin markers. Based on this genetic map, one locus for fruit bitterness, one locus for rind color, and one locus for seed coat color with high LOD scores (58.361, 18.353, 26.852) were identified on chromosome 1, chromosome 8, and chromosome 3, respectively. These prominent loci were identified in a region of 6.16 Mb, 2.07 Mb, and 0.37 Mb, respectively. On the basis of current research, the high-density map and mapping results will provide a valuable tool for identifying candidate genes, map-based gene cloning, comparative mapping, and marker-assisted selection (MAS) in watermelon breeding

    Molecular Mapping and Candidate Gene Analysis for GA3 Responsive Short Internode in Watermelon (Citrullus lanatus)

    No full text
    Plants with shorter internodes are suitable for high-density planting, lodging resistance and the preservation of land resources by improving yield per unit area. In this study, we identified a locus controlling the short internode trait in watermelon using Zhengzhouzigua (long internode) and Duan125 (short internode) as mapping parents. Genetic analysis indicated that F1 plants were consistent with long internode plants, which indicates that the long internode was dominant over the short internode. The observed F2 and BC1 individuals fitted the expected phenotypic segregation ratios of 3:1 and 1:1, respectively. The locus was mapped on chromosome 9 using a bulked segregant analysis approach. The region was narrowed down to 8.525 kb having only one putative gene, Cla015407, flanking by CAPS90 and CAPS91 markers, which encodes gibberellin 3β-hydroxylase (GA 3β-hydroxylase). The sequence alignment of the candidate gene between both parents revealed a 13 bp deletion in the short internode parent, which resulted in a truncated protein. Before GA3 application, significantly lower GA3 content and shorter cell length were obtained in the short internode plants. However, the highest GA3 content and significant increase in cell length were observed in the short internode plants after exogenous GA3 application. In the short internode plants, the expression level of the Cla015407 was threefold lower than the long internode plants in the stem tissue. In general, our results suggested that Cla015407 might be the candidate gene responsible for the short internode phenotype in watermelon and the phenotype is responsive to exogenous GA3 application

    The statistics of KEGG enrichment of the DEGs in different development stages for the same experimental material.

    No full text
    <p>X axis means number of DEGs. Y axis represents second KEGG pathway terms. All second pathway terms are grouped in top pathway terms indicated in different color.</p

    Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon

    No full text
    <div><p>Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (<i>Citrullus lanatus</i>) fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar ‘203Z’ and its near-isogenic line (NIL) ‘SW’ (in the ‘203Z’ background) were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs) related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy), sucrose-phosphate synthase (SPSs), insoluble acid invertases (IAI), NAD-dependent malate dehydrogenase (NAD-cyt MDH), aluminum-activated malate transporter (ALMT), and citrate synthase (CS). This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening.</p></div

    Hierarchical clustering analysis of DEGs between different developmental stages of 203Z and SW.

    No full text
    <p>(C1-VS-C2, D1-VS-D2, C2-VS-C3, D2-VS-D3, C3-VS-C4, D3-VS-D4, “a” was the control and “b” was experimental group in “a-VS-b”). Each line refers to data from one gene. The color bar represents the log<sub>2</sub> (Fold change) and ranges from blue (low expression) to red (high expression).</p
    corecore