96 research outputs found

    Bergmann-Thomson energy-momentum complex for solutions more general than the Kerr-Schild class

    Get PDF
    In a very well-known paper, Virbhadra's research group proved that the Weinberg, Papapetrou, Landau and Lifshitz, and Einstein energy-momentum complexes ``coincide'' for all metrics of Kerr-Schild class. A few years later, Virbhadra clarified that this ``coincidence'' in fact holds for metrics more general than the Kerr-Schild class. In the present paper, this study is extended for the Bergmann-Thomson complex and it is proved that this complex also ``coincides'' with those complexes for a more general than the Kerr-Schild class metric.Comment: RevTex, 12 page

    Energy and momentum of Bianchi Type VI_h Universes

    Get PDF
    We obtain the energy and momentum of the Bianchi type VI_h universes using different prescriptions for the energy-momentum complexes in the framework of general relativity. The energy and momentum of the Bianchi VI_h universe are found to be zero for the parameter h = -1 of the metric. The vanishing of these results support the conjecture of Tryon that Universe must have a zero net value for all conserved quantities.This also supports the work of Nathan Rosen with the Robertson-Walker metric. Moreover, it raises an interesting question: "Why h=-1 case is so special?

    Energy Distribution of a Stationary Beam of Light

    Full text link
    Aguirregabiria et al showed that Einstein, Landau and Lifshitz, Papapetrou, and Weinberg energy-momentum complexes coincide for all Kerr-Schild metric. Bringely used their general expression of the Kerr-Schild class and found energy and momentum densities for the Bonnor metric. We obtain these results without using Aguirregabiria et al results and verify that Bringley's results are correct. This also supports Aguirregabiria et al results as well as Cooperstock hypothesis. Further, we obtain the energy distribution of the space-time under consideration.Comment: Latex, no figures [Admin note: substantial overlap with gr-qc/9910015 and hep-th/0308070

    InxGa1-xP Nanowire Growth Dynamics Strongly Affected by Doping Using Diethylzinc

    Get PDF
    Semiconductor nanowires are versatile building blocks for optoelectronic devices, in part because nanowires offer an increased freedom in material design due to relaxed constraints on lattice matching during the epitaxial growth. This enables the growth of ternary alloy nanowires in which the bandgap is tunable over a large energy range, desirable for optoelectronic devices. However, little is known about the effects of doping in the ternary nanowire materials, a prerequisite for applications. Here we present a study of p-doping of InxGa1-xP nanowires and show that the growth dynamics are strongly affected when diethylzinc is used as a dopant precursor. Specifically, using in situ optical reflectometry and high-resolution transmission electron microscopy we show that the doping results in a smaller nanowire diameter, a more predominant zincblende crystal structure, a more Ga-rich composition, and an increased axial growth rate. We attribute these effects to changes in seed particle wetting angle and increased TMGa pyrolysis efficiency upon introducing diethylzinc. Lastly, we demonstrate degenerate p-doping levels in InxGa1-xP nanowires by the realization of an Esaki tunnel diode. Our findings provide insights into the growth dynamics of ternary alloy nanowires during doping, thus potentially enabling the realization of such nanowires with high compositional homogeneity and controlled doping for high-performance optoelectronics devices

    Teleparallel Energy-Momentum Distribution of Static Axially Symmetric Spacetimes

    Full text link
    This paper is devoted to discuss the energy-momentum for static axially symmetric spacetimes in the framework of teleparallel theory of gravity. For this purpose, we use the teleparallel versions of Einstein, Landau-Lifshitz, Bergmann and Mo¨\ddot{o}ller prescriptions. A comparison of the results shows that the energy density is different but the momentum turns out to be constant in each prescription. This is exactly similar to the results available in literature using the framework of General Relativity. It is mentioned here that Mo¨\ddot{o}ller energy-momentum distribution is independent of the coupling constant λ\lambda. Finally, we calculate energy-momentum distribution for the Curzon metric, a special case of the above mentioned spacetime.Comment: 14 pages, accepted for publication in Mod. Phys. Lett.

    Energy Distribution associated with Static Axisymmetric Solutions

    Full text link
    This paper has been addressed to a very old but burning problem of energy in General Relativity. We evaluate energy and momentum densities for the static and axisymmetric solutions. This specializes to two metrics, i.e., Erez-Rosen and the gamma metrics, belonging to the Weyl class. We apply four well-known prescriptions of Einstein, Landau-Lifshitz, Papaterou and Mo¨\ddot{o}ller to compute energy-momentum density components. We obtain that these prescriptions do not provide similar energy density, however momentum becomes constant in each case. The results can be matched under particular boundary conditions.Comment: 18 pages, accepted for publication in Astrophysics and SpaceScienc

    Energy and Momentum densities of cosmological models, with equation of state ρ=μ\rho=\mu, in general relativity and teleparallel gravity

    Full text link
    We calculated the energy and momentum densities of stiff fluid solutions, using Einstein, Bergmann-Thomson and Landau-Lifshitz energy-momentum complexes, in both general relativity and teleparallel gravity. In our analysis we get different results comparing the aforementioned complexes with each other when calculated in the same gravitational theory, either this is in general relativity and teleparallel gravity. However, interestingly enough, each complex's value is the same either in general relativity or teleparallel gravity. Our results sustain that (i) general relativity or teleparallel gravity are equivalent theories (ii) different energy-momentum complexes do not provide the same energy and momentum densities neither in general relativity nor in teleparallel gravity. In the context of the theory of teleparallel gravity, the vector and axial-vector parts of the torsion are obtained. We show that the axial-vector torsion vanishes for the space-time under study.Comment: 15 pages, no figures, Minor typos corrected; version to appear in International Journal of Theoretical Physic

    Stable Magnetic Universes Revisited

    Full text link
    A regular class of static, cylindrically symmetric pure magnetic field metrics is rederived in a different metric ansatz in all dimensions. Radial, time dependent perturbations show that for dimensions d>3 such spacetimes are stable at both near r\approx0 and large radius r\rightarrow\infty. In a different gauge these stability analysis and similar results were known beforehand. For d=3, however, simultaneous stability requirement at both, near and far radial distances can not be reconciled for time - dependent perturbations. Restricted, numerical geodesics for neutral particles reveal a confinement around the center in the polar plane. Charged, time-like geodesics for d=4 on the other hand are shown numerically to run toward infinity.Comment: 11 pages, 3figure

    Distribution of Energy-Momentum in a Schwarzschild-Quintessence Space-time Geometry

    Full text link
    An analysis of the energy-momentum localization for a four-dimensional\break Schwarzschild black hole surrounded by quintessence is presented in order to provide expressions for the distributions of energy and momentum. The calculations are performed by using the Landau-Lifshitz and Weinberg energy-momentum complexes. It is shown that all the momenta vanish, while the expression for the energy depends on the mass MM of the black hole, the state parameter wqw_{q} and the normalization factor cc. The special case of wq=2/3w_{q}=-2/3 is also studied, and two limiting cases are examined.Comment: 9 page
    corecore