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We obtain the energy and momentum of the Bianchi type VIℎ universes using different prescriptions for the energy-momentum
complexes in the framework of general relativity. The energy and momentum of the Bianchi VIℎ universes are found to be zero
for the parameter ℎ = −1 of the metric. The vanishing of these results supports the conjecture of Tryon that the universe must
have a zero net value for all conserved quantities. This also supports the work of Nathan Rosen with the Robertson-Walker metric.
Moreover, it raises an interesting question: “Why is the ℎ = −1 case so special?”

1. Introduction

The local distribution of energy and momentum has
remained a challenging domain of research in the context
of Einstein’s general relativity. Einstein proposed the first
energy-momentum complex [1] that follows the covariant
conservation laws by including the energy and momenta of
gravitational fields alongwith those ofmatter andnongravita-
tional fields. The energy-momentum due to the gravitational
field turns out to be a nontensorial object. The choice of the
gravitational field pseudotensor (nontensor) is not unique
and therefore, following Einstein, many authors prescribed
different definitions of energy-momentum complexes based
on the canonical approach (e.g., Tolman [2], Papapetrou
[3], Landau and Lifshitz (LL) [4], Bergmann and Thompson
(BT) [5], and Weinberg [6]). The Tolman definition is
essentially the same as that of Einstein; however, these two
definitions differ in form and sometimes it is easier to use
Tolman’s definition. This was explained by Virbhadra [7].
The main concern in the use of these definitions is that

they are coordinate-dependent. However, with these defini-
tions, meaningful and reasonable results can be obtained if
“Cartesian coordinates” (also called quasi-Cartesian or quasi-
Minkowskian for asymptotically Minkowskian space-times)
are used. Some coordinate-independent definitions have also
been proposed byMøller [8], Komar [9] andPenrose [10].The
coordinate-independent prescriptions, including the quasi-
local mass of Penrose [10], were found to have some serious
shortcomings as these are limited to a certain class of
symmetries only (see in [7] and also references therein).

The issue of energy localization and the coordinate
dependence of these definitions gained momentum with
renewed interests after the works of Virbhadra and his
collaborators (notably, Nathan Rosen, the most famous col-
laborator of Albert Einstein, of the Einstein-Rosen bridge,
the EPR paradox, and the Einstein-Rosen gravitational waves
fame) who found a striking similarity in the results for
different energy-momentum prescriptions. They considered
numerous space-times [11–25] and obtained seminal results
that rejuvenated this field of research.
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Virbhadra [7] further investigated whether or not these
energy-momentum complexes lead to the same results for
the most general nonstatic spherically symmetric metric and
found that they disagree. Virbhadra and his collaborators [13–
25] observed that if the calculations of energy-momentum
are done in Kerr-Schild Cartesian coordinates, then the
energy-momentum complexes of Papapetrou [3], Landau
and Lifshitz [4], andWeinberg [6] produce the same result as
in the Einstein definition. However, if the computations are
made in Schwarzschild Cartesian coordinates, these energy-
momentum complexes disagree [7]. Xulu [26] confirmed
this by obtaining the energy and momentum for the most
general nonstatic spherically symmetric system using the
Møller definition and found a different result in general
form than those obtained by Einstein’s definition. Xulu and
others [26–54] obtained many important results in this field.
However, till now, there is no completely acceptable definition
for energy and momentum distributions in general relativity
even though prescriptions in teleparallel gravity claim to
provide a satisfactory solution to this problem [55, 56].
Gad calculated the energy and momentum densities of stiff
fluid case using the prescriptions of Einstein, Begmann-
Thompson, and Landau-Liftshitz in both the general rela-
tivity and the teleparallel gravity and found that different
prescriptions do not provide the same results in both theories.
Also, they have shown that both the general relativity and
the teleparallel gravity are equivalent [56]. Similar results
have also been obtained by Aygün and coworkers in [57, 58]
where the authors have concluded that energy-momentum
definitions are identical not only in general relavity but also
in teleparallel gravity.

Bianchi type models are spatially homogeneous and
anisotropic universe models. These models are nine in num-
ber, but their classification permits splitting them in two
classes. There are six models in class 𝐴 (I, II, VI1, VII, VIII,
and IX) and five in class 𝐵 (III, IV, V, VIℎ, and VIIℎ). Spatially
homogeneous cosmological models play an important role
in understanding the structure and properties of the space
of all cosmological solutions of Einstein field equations.
These spatially homogeneous and anisotropic models are
the exact solutions of Einstein field equations and are more
general than the Friedman models in the sense that they can
provide interesting results pertaining to the anisotropy of the
universe. Here, it is worth to mention that the issue of global
anisotropy has gained a lot of research interest in recent times.
The standard cosmological model (ΛCDM) based upon the
spatial isotropy and flatness of the universe is consistent with
the data from precise measurements of the CMB temperature
anisotropy [59] from the Wilkinson Microwave Anisotropy
Probe (WMAP). However, the ΛCDM model suffers from
some anomalous features at large scale and signals a deviation
from the usual geometry of the universe. Recently released
Planck data [60–63] show a slight red shift of the primordial
power spectrum from the exact scale invariance. It is clear
from the Planck data that the ΛCDMmodel does not fit well
to the temperature power spectrum at low multipoles. Also,
precise measurements from WMAP predict asymmetric
expansion with one direction expanding differently from the
other two transverse directions at equatorial plane [64] which

signals a nontrivial topology of the large scale geometry of the
universe (see [65, 66] and references therein).

In recent times this pressing issue of the energy and
momentum localization has been studied widely by many
authors using different space-times and definitions of energy-
momentum complexes. The importance of the study of
energy and momentum distribution lies in the fact that it
helps us getting an idea of the effective gravitational mass
of metrics of certain symmetries and can put deep insight
into the gravitational lensing phenomena [67–73]. In fact,
the energy-momentum distribution in space-time can be
interpreted as effective gravitational mass if the space-time
has certain symmetry. However, negative and positive energy
distributions in space-times always indicate divergent and
convergent gravitational lensing, respectively.

Using Einstein definition, Banerjee and Sen [74] studied
the energy distribution with Bianchi type I (BI) space-time.
Xulu [33] calculated the total energy in BI universes using the
prescriptions of LL, Pappapetrou, and Weinberg. Radinschi
[39] calculated the energy of a model of the universe based
on the Bianchi type VI0 metric using the energy-momentum
complexes of LL and of Papapetrou. She found that the energy
due to the matter plus field is equal to zero. Aydoğdu and
Salti [75], using the Møller’s tetrad, investigated the energy
of the BI universe. In another work, Aydogdu and Salti [76]
calculated the energy of the LRS Bianchi type II metric to get
consistent results.

In this paper, we obtain the energy and momentum for a
more general homogeneous and anisotropic Bianchi type VIℎ
metric and its transformation by using different prescriptions
for the energy-momentum complex in general relativity.
The Bianchi type VIℎ model has already been shown to
provide interesting results in cosmology in connection with
the late time accelerated expansion of the universe when the
contribution to the matter field comes from one-dimensional
cosmic strings and bulk viscosity [77]. In the present work,
we have used the convention that Latin indices take values
from 0 to 3 and Greek indices run from 1 to 3. We use
geometrized units where 𝐺 = 1 and 𝑐 = 1. The composition
of the paper is as follows. In Section 2, we have written the
energy-momentum tensor for the Bianchi type VIℎ space-
time. In Section 3, the Einstein energy-momentum complex
is discussed, following which we investigate the energy-
momentum complex of Landau and Lifshitz, Papapetrou,
and Bergmann Thomson for the assumed metric in the
subsequent subsections. In the last section,we summarize our
results.

2. Bianchi Type VIℎ Space-Time

We have considered the Bianchi type VIℎ space-time in the
form
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The metric potentials 𝐴, 𝐵, and 𝐶 are functions of cosmic
time 𝑡 only. Further, 𝑥𝑖, 𝑖 = 1, 2, 3, 0, respectively, denote
the coordinates 𝑥, 𝑦, 𝑧, and 𝑡. The exponent ℎ is time-
independent and can assume integral values in the range
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ℎ = −1, 0, 1. It should be mentioned here that these are not
vacuum solutions as 𝑇𝑖

𝑘
̸= 0 for all 𝑖 and 𝑘.

For metric (1), the determinant of themetric tensor 𝑔 and
the contravariant components of the tensor are, respectively,
given as
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(2)

In general relativity, the energy-momentum tensor is given by
8𝜋𝑇𝑗
𝑖
= 𝑅
𝑗
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− (1/2)𝑅𝑔𝑗

𝑖
, where 𝑅

𝑗

𝑖
is the Ricci tensor and 𝑅 is

the Ricci scalar.The nonvanishing components of the energy-
momentum tensor for the Bianchi type VIℎ space time are
given below (this is not a new result; however, we put it here
because we need it for analysing and discussing results):
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where the overhead dots hereafter denote ordinary time
derivatives.

3. Energy-Momentum Complexes

3.1. Einstein Energy-Momentum Complex. The Einstein
energy-momentum complex is [1]
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Θ
0
0 and Θ

0
𝛼
stand for the energy and momentum density

components, respectively. The energy and momentum com-
ponents are obtained through a volume integration
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By applying Gauss’ theorem, the above equation can also
be reduced to

𝑃𝑖 =
1
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where 𝑛𝛼 is the outward unit normal vector over the infinites-
imal surface element 𝑑𝑆. 𝑃0 and 𝑃𝛼 stand for the energy and
momentum components, respectively. The required nonvan-
ishing components of𝐻𝑘𝑙

𝑖
for line element (1) are given by
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Using (8), we obtain the components of energy and momen-
tum densities as
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If the dependence of 𝐴, 𝐵, and 𝐶 on the time coordinate 𝑡

were known, one could evaluate the surface integral. It is clear
from the above results that, for the specific choices of ℎ, that
is, ℎ = 0 and 1, the energy of the VIℎ universe in the Einstein
prescription is not zero. However, it is interesting to note that
the energy and momentum densities vanish for ℎ = −1.

3.2. Landau and Lifshitz Energy-Momentum Complex. The
symmetric Landau and Lifshitz energy-momentum complex
is [4]
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Here 𝐿
00 and 𝐿

𝛼0 are the energy and momentum density
components.

The energy and momentum can be defined through the
volume integral
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Using Gauss’ theorem, the energy and momentum compo-
nents become
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The required nonvanishing components of 𝜆𝑖𝑘𝑙𝑚 for the
present model are obtained as
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Using these components in (13), we obtain
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where 𝑟 = √𝑥2 + 𝑦2 + 𝑧2. For the Landau and Lifshitz
prescription, the energy of the universe is nonzero for ℎ = 0
and 1 and it vanishes for ℎ = −1.

3.3. Papapetrou Energy-MomentumComplex. Thesymmetric
energy-momentum complex of Papapetrou is given by [3]
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Here Σ
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current (momentum) density components. The energy and
momentum can be defined as
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For time-independent metrics, one can have
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The nonvanishing components of N𝑖𝑘𝑙𝑚 required to obtain
the energy and momentum density components for the
space-time described by line element (1) are
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The Papapertrou energy and energy current density compo-
nents are obtained by using the above components in (21) as
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Like the previous cases, it can be concluded from the
above components that the energy of the universe in the
Papapetrou prescription is nonzero for ℎ = 0 and 1 and
it becomes zero for ℎ = −1. Therefore, the energy and
momentum components both are zero for ℎ = −1.

3.4. Bergmann-Thompson Energy-Momentum Complex. The
Bergmann-Thompson energy-momentum complex is [5]
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Here B00 and B𝛼0 are the energy and momentum densities,
respectively. The energy and momentum can be defined as
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Using Gauss’s theorem, the energy and momentum compo-
nents can be expressed as
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In order to calculate the energy and momentum distri-
bution for Bianchi type VIℎ space-time using the Bergmann
and Thompson energy-momentum complex, we require the
following nonvanishing components ofB𝑘𝑚

𝑙
:
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The energy and momentum density components can be
obtained by using (27) in (23) as
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It is clear that the energy of the Bianchi VIℎ universe
is zero in Bergmann-Thompson prescription ∀ℎ = 0, ±1.
However, the energy and all momentum components vanish
for ℎ = −1.

4. Summary

In the present study, we have obtained energy and
momentum distributions for the spatially homogeneous
and anisotropic Bianchi type VIℎ metric using Einstein,
Landau and Lifshitz, Papapetrou, and Bergmann-Thompson
complexes in the framework of general relativity. Bianchi
type VIℎ space-time has an edge over the usual Friedman-
Robertson-Walker (FRW) in the sense that it can handle the
anisotropic spatial expansion. In the present study, we found
that the energy and momentum vanish for the Bianchi VI−1
universe. The only exception to this is the case of Landau
and Lifshitz where although energy density components
vanish, the momentum density components do not vanish
in general for ℎ = −1. Virbhadra (refer to [7] and references
in this paper) however pointed out that the Landau and
Lifshitz complex does not work as good as the Einstein
complex and the latter is the best for energy-momentum
calculations. Other energy-momentum complexes agree
with that of Einstein’s for the ℎ = −1 case. Equation (3) shows
that the energy and momentum densities due to matter
and nongravitational fields are nonzero even for ℎ = −1.
However, as energy-momentum complexes include effects of
the gravitational field as well, the total result comes to be zero.

The observation of the cosmic microwave background
radiation by Penzias and Wilson [78, 79] in the year 1965
strongly supports that some version of the big bang theory is
correct and it also suggested a remarkable conjecture regard-
ing the total energy and momentum of the universe. Tryon
[80] assumed that our universe appeared fromnowhere about
1010 years ago. He pondered that the conventional laws of
physics need not have been violated at the time of creation

of the universe. Therefore, he proposed that our universe
must have a zero net value for all conserved quantities.
Further, he presented arguments suggesting that the net
energy and momentum of our universe may be indeed zero.
Tryon gave a particular big bang model and according to
that our universe is a fluctuation of the vacuum and he
predicted a homogeneous, isotropic, and closed universe
consisting of equal amount of matter and antimatter. Tryon,
in the same paper, also mentioned an excellent topological
argument by Bergmann that any closed universe has zero
energy. Later, Rosen [81], in the year 1994, considered a closed
homogeneous isotropic universe described by the Friedman-
Robertson-Walker (FRW) metric and found that the total
energy of the universe is zero (sadly, he passed away in the
following year (1995)). Excited by these results, Xulu [33]
studied energy and momentum in Bianchi type I universes
and his results supported the conjecture of Tryon.

In view of the satisfying results mentioned in the above
paragraph, the outcome of our research that the energy and
momentum of the Bianchi VI−1 universe are zero is indeed a
very important result. However, one would ask “Why is this
true only for the ℎ = −1 case?” History of science has records
that coincidence of results usually points out something very
important. Thus, it remains to be investigated: “Why is the
ℎ = −1 case so special?” It is likely that the outcome of these
investigations would have important implications for general
relativity and relativistic astrophysics.
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