60 research outputs found

    NSs, the Silencing Suppressor of Tomato Spotted Wilt Orthotospovirus, Interferes with JA-Regulated Host Terpenoids Expression to Attract \u3cem\u3eFrankliniella occidentalis\u3c/em\u3e

    Get PDF
    Tomato spotted wilt orthotospovirus (TSWV) causes serious crop losses worldwide and is transmitted by Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). NSs protein is the silencing suppressor of TSWV and plays an important role in virus infection, cycling, and transmission process. In this research, we investigated the influences of NSs protein on the interaction of TSWV, plants, and F. occidentalis with the transgenic Arabidopsis thaliana. Compared with the wild-type Col-0 plant, F. occidentalis showed an increased number and induced feeding behavior on transgenic Arabidopsis thaliana expressing exogenous NSs. Further analysis showed that NSs reduced the expression of terpenoids synthesis-related genes and the content of monoterpene volatiles in Arabidopsis. These monoterpene volatiles played a repellent role in respect to F. occidentalis. In addition, the expression level of plant immune-related genes and the content of the plant resistance hormone jasmonic acid (JA) in transgenic Arabidopsis were reduced. The silencing suppressor of TSWV NSs alters the emission of plant volatiles and reduces the JA-regulated plant defenses, resulting in enhanced attractiveness of plants to F. occidentalis and may increase the transmission probability of TSWV

    The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of \u3cem\u3eBemisia tabaci\u3c/em\u3e

    Get PDF
    The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA)-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV). The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles—especially the quantity of methyl salicylate and ή-limonene. In Y-tube olfactometer assays, methyl salicylate and ή-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles

    Plants Pre-Infested With Viruliferous MED/Q Cryptic Species Promotes Subsequent \u3cem\u3eBemisia tabaci\u3c/em\u3e Infestation

    Get PDF
    The sweet potato whitefly, Bemisia tabaci, is one of the most invasive insect pests worldwide. The two most destructive whitefly cryptic species are MEAM1/B and MED/Q. Given that MED/Q has replaced MEAM1/B in China and the invasion of MED/Q has coincided with the outbreak of tomato yellow leaf curl virus (TYLCV), we hypothesize that pre-infestation with viruliferous B. tabaci will affect the subsequent host preferences. To test this hypothesis, we (1) conducted bioassays to compare the host preference of viruliferous and non-viruliferous MEAM1/B and MED/Q, respectively, on plants pre-infested with viruliferous and non-viruliferous MEAM1/B and MED/Q; (2) profiled plant volatiles using GC-MS; and (3) functionally characterized chemical cues could potentially modulate B. tabaci-TYLCV-tomato interactions, including ρ-cymene, thujene and neophytadiene, using a Y-tube olfactometer. As a result, plants pre-infested with MEAM1/B whiteflies carrying TYLCV or not, did not attract more or less B or Q whiteflies. Plants pre-infested with non-viruliferous MED/Q resisted MEAM1/B but did not affect MED/Q. However, plants pre-infested with viruliferous MED/Q attracted more whiteflies. Feeding of viruliferous MED/Q reduced the production of ρ-cymene, and induced thujene and neophytadiene. Functionally analyses of these plant volatiles show that ρ-cymene deters while neophytadiene recruits whiteflies. These combined results suggest that pre-infestation with viruliferous MED/Q promotes the subsequent whitefly infestation and induces plant volatile neophytadiene which recruits whiteflies

    Bemisia Tabaci Q Carrying Tomato Yellow Leaf Curl Virus Strongly Suppresses Host Plant Defenses

    Get PDF
    The concurrence of tomato yellow leaf curl virus (TYLCV) with the spread of its vector Bemisia tabaci Q rather than B in China suggests a more mutualistic relationship between TYLCV and Q. Here, we investigated the hypothesis that viruliferous B and Q have different effects on plant defenses. We found the fecundity of nonviruliferous B, nonviruliferous Q, viruliferous Q and viruliferous B was 11.080, 12.060, 10.760, and 11.220 respectively on plants previously attacked by the other biotype, however, on their respective noninfested control leaves fecundity was 12.000, 10.880, 9.760, and 8.020 respectively. Only viruliferous B had higher fecundity on viruliferous Q-infested plants than on control plants. The longevity of viruliferous B showed the same phenomenon. At 1 d infestion, the jasmonic acid content in leaves noninfested and in leaves infested with nonviruliferous B, nonviruliferous Q, viruliferous B and viruliferous Q was 407.000, 281.333, 301.333, 266.667 and 134.000 ng/g FW, respectively. The JA content was lowest in viruliferous Q-infested leaves. The proteinase inhibitor activity and expression of JA-related upstream gene LOX and downstream gene PI II showed the same trend. The substantial suppression of host defenses by Q carrying TYLCV probably enhances the spread of Q and TYLCV in China

    Odor, Not Performance, Dictates \u3cem\u3eBemisia tabaci\u3c/em\u3e\u27s Selection Between Healthy and Virus Infected Plants

    Get PDF
    Although, insect herbivores are generally thought to select hosts that favor the fitness of their progeny, this “mother-knows-best” hypothesis may be challenged by the presence of a plant virus. Our previous study showed that the whitefly, Bemisia tabaci, the obligate vector for transmitting Tomato yellow leaf curl virus (TYLCV), preferred to settle and oviposit on TYLCV-infected rather than healthy host plant, Datura stramonium. The performances of B. tabaci larvae and adults were indeed improved on virus-infected D. stramonium, which is consistent with “mother-knows-best” hypothesis. In this study, B. tabaci Q displayed the same preference to settle and oviposit on Tomato spotted wilt virus (TSWV)-infected host plants, D. stramonium and Capsicum annuum, respectively. As a non-vector of TSWV, however, insect performance was impaired since adult body size, longevity, survival, and fecundity were reduced in TSWV infected D. stramonium. This appears to be an odor-mediated behavior, as plant volatile profiles are modified by viral infection. Infected plants have reduced quantities of o-xylene and α-pinene, and increased levels of phenol and 2-ethyl-1-hexanol in their headspace. Subsequent behavior experiments showed that o-xylene and α-pinene are repellant, while phenol and 2-ethyl-1-hexanol are attractive. This indicates that the preference of B. tabaci for virus-infected plants is modulated by the dynamic changes in the volatile profiles rather than the subsequent performances on virus-infected plants

    Odor, Not Performance, Dictates \u3cem\u3eBemisia tabaci\u3c/em\u3e\u27s Selection Between Healthy and Virus Infected Plants

    Get PDF
    Although, insect herbivores are generally thought to select hosts that favor the fitness of their progeny, this “mother-knows-best” hypothesis may be challenged by the presence of a plant virus. Our previous study showed that the whitefly, Bemisia tabaci, the obligate vector for transmitting Tomato yellow leaf curl virus (TYLCV), preferred to settle and oviposit on TYLCV-infected rather than healthy host plant, Datura stramonium. The performances of B. tabaci larvae and adults were indeed improved on virus-infected D. stramonium, which is consistent with “mother-knows-best” hypothesis. In this study, B. tabaci Q displayed the same preference to settle and oviposit on Tomato spotted wilt virus (TSWV)-infected host plants, D. stramonium and Capsicum annuum, respectively. As a non-vector of TSWV, however, insect performance was impaired since adult body size, longevity, survival, and fecundity were reduced in TSWV infected D. stramonium. This appears to be an odor-mediated behavior, as plant volatile profiles are modified by viral infection. Infected plants have reduced quantities of o-xylene and α-pinene, and increased levels of phenol and 2-ethyl-1-hexanol in their headspace. Subsequent behavior experiments showed that o-xylene and α-pinene are repellant, while phenol and 2-ethyl-1-hexanol are attractive. This indicates that the preference of B. tabaci for virus-infected plants is modulated by the dynamic changes in the volatile profiles rather than the subsequent performances on virus-infected plants

    MAPK Signaling Pathway Alters Expression of Midgut ALP and ABCC Genes and Causes Resistance to \u3cem\u3eBacillus thuringiensis\u3c/em\u3e Cry1Ac Toxin in Diamondback Moth

    Get PDF
    Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP) outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK) signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella

    The Invasive MED/Q \u3cem\u3eBemisia tabaci\u3c/em\u3e Genome: A Tale of Gene Loss and Gene Gain

    Get PDF
    Background: Sweetpotato whitefly, Bemisia tabaci MED/Q and MEAM1/B, are two economically important invasive species that cause considerable damages to agriculture crops through direct feeding and indirect vectoring of plant pathogens. Recently, a draft genome of B. tabaci MED/Q has been assembled. In this study, we focus on the genomic comparison between MED/Q and MEAM1/B, with a special interest in MED/Q’s genomic signatures that may contribute to the highly invasive nature of this emerging insect pest. Results: The genomes of both species share similarity in syntenic blocks, but have significant divergence in the gene coding sequence. Expansion of cytochrome P450 monooxygenases and UDP glycosyltransferases in MED/Q and MEAM1/B genome is functionally validated for mediating insecticide resistance in MED/Q using in vivo RNAi. The amino acid biosynthesis pathways in MED/Q genome are partitioned among the host and endosymbiont genomes in a manner distinct from other hemipterans. Evidence of horizontal gene transfer to the host genome may explain their obligate relationship. Putative loss-of-function in the immune deficiency-signaling pathway due to the gene loss is a shared ancestral trait among hemipteran insects. Conclusions: The expansion of detoxification genes families, such as P450s, may contribute to the development of insecticide resistance traits and a broad host range in MED/Q and MEAM1/B, and facilitate species’ invasions into intensively managed cropping systems. Numerical and compositional changes in multiple gene families (gene loss and gene gain) in the MED/Q genome sets a foundation for future hypothesis testing that will advance our understanding of adaptation, viral transmission, symbiosis, and plant-insect-pathogen tritrophic interactions

    Antennal transcriptomic analysis of carboxylesterases and glutathione S-transferases associated with odorant degradation in the tea gray geometrid, Ectropis grisescens (Lepidoptera, Geometridae)

    Get PDF
    Introduction: Carboxylesterases (CXEs) and glutathione S-transferases (GSTs) can terminate olfactory signals during chemosensation by rapid degradation of odorants in the vicinity of receptors. The tea grey geometrid, Ectropis grisescens (Lepidoptera, Geometridae), one of the most devastating insect herbivores of tea plants in China, relies heavily on plant volatiles to locate the host plants as well as the oviposition sites. However, CXEs and GSTs involved in signal termination and odorant clearance in E. grisescens remains unknown.Methods: In this study, identification and spatial expression profiles of CXEs and GSTs in this major tea pest were investigated by transcriptomics and qRT-PCR, respectively.Results: As a result, we identified 28 CXEs and 16 GSTs from female and male antennal transcriptomes. Phylogenetic analyses clustered these candidates into several clades, among which antennal CXEs, mitochondrial and cytosolic CXEs, and delta group GSTs contained genes commonly associated with odorants degradation. Spatial expression profiles showed that most CXEs (26) were expressed in antennae. In comparison, putative GSTs exhibited a diverse expression pattern across different tissues, with one GST expressed specifically in the male antennae.Disscussion: These combined results suggest that 12 CXEs (EgriCXE1, 2, 4, 6, 8, 18, 20-22, 24, 26, and 29) and 5 GSTs (EgriGST1 and EgriGST delta group) provide a major source of candidate genes for odorants degradation in E. grisescens

    Genome Sequencing of the Sweetpotato Whitefly \u3cem\u3eBemisia tabaci\u3c/em\u3e MED/Q

    Get PDF
    The sweetpotato whitefly Bemisia tabaci is a highly destructive agricultural and ornamental crop pest. It damages host plants through both phloem feeding and vectoring plant pathogens. Introductions of B. tabaci are difficult to quarantine and eradicate because of its high reproductive rates, broad host plant range, and insecticide resistance. A total of 791 Gb of raw DNA sequence from whole genome shotgun sequencing, and 13 BAC pooling libraries were generated by Illumina sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold N50 of 437 kb, and a total length of 658 Mb. Annotation of repetitive elements and coding regions resulted in 265.0 Mb TEs (40.3%) and 20 786 protein-coding genes with putative gene family expansions, respectively. Phylogenetic analysis based on orthologs across 14 arthropod taxa suggested that MED/Q is clustered into a hemipteran clade containing A. pisum and is a sister lineage to a clade containing both R. prolixus and N. lugens. Genome completeness, as estimated using the CEGMA and Benchmarking Universal Single-Copy Orthologs pipelines, reached 96% and 79%. These MED/Q genomic resources lay a foundation for future \u27pan-genomic\u27 comparisons of invasive vs. noninvasive, invasive vs. invasive, and native vs. exotic Bemisia, which, in return, will open up new avenues of investigation into whitefly biology, evolution, and management
    • 

    corecore