44 research outputs found

    Hydrogen-Bonded Multilayers of Silk Fibroin: From Coatings to Cell-Mimicking Shaped Microcontainers

    No full text
    We present a novel type of all-aqueous nonionic layer-by-layer films of silk fibroin with synthetic macromolecules and a natural polyphenol. We found the multilayer growth and stability to be strongly pH-dependent. Silk assembled with poly­(methacrylic) and tannic acids at pH = 3.5 disintegrated at pH ∼ 5, while silk/poly­(<i>N</i>-vinylcaprolactam) interactions were stable at low and high pH values but resulted in thinner films at a high pH. The results suggest that the intermolecular interactions are primarily driven by hydrogen bonding with a considerable contribution of hydrophobic forces. We also demonstrated that cubical, spherical, and platelet capsules with silk-containing walls can be constructed using particulate sacrificial templates. This work sets a foundation for future explorations of natural and synthetic macromolecules assemblies as biomimetic materials with tunable properties

    Additional file 2: of In-depth comparative analysis of malaria parasite genomes reveals protein-coding genes linked to human disease in Plasmodium falciparum genome

    No full text
    Figure S1. Clusters composed of members from a single species or six species. a) Clusters comprise P. vavix genes (left panel) or P. falciparum genes (right panel). b) Clusters comprising genes from six Plasmodium species. (TIF 1617 kb

    In Situ Reductive Synthesis of Structural Supported Gold Nanorods in Porous Silicon Particles for Multifunctional Nanovectors

    No full text
    Porous silicon nanodisks (PSD) were fabricated by the combination of photolithography and electrochemical etching of silicon. By using PSD as a reducing agent, gold nanorods (AuNR) were in situ synthesized in the nanopores of PSD, forming PSD-supported-AuNR (PSD/AuNR) hybrid particles. The formation mechanism of AuNR in porous silicon (pSi) was revealed by exploring the role of pSi reducibility and each chemical in the reaction. With the PSD support, AuNR exhibited a stable morphology without toxic surface ligands (CTAB). The PSD/AuNR hybrid particles showed enhanced plasmonic property compared to free AuNR. Because high-density “hot spots” can be generated by controlling the distribution of AuNR supported in PSD, surface-enhanced raman scattering (SERS) using PSD/AuNR as particle substrates was demonstrated. A multifunctional vector, PSD/AuNR/DOX, composed of doxorubicin (DOX)-loaded PSD/AuNR capped with agarose (agar), was developed for highly efficient, combinatorial cancer treatment. Their therapeutic efficacy was examined using two pancreatic cancer cell lines, PANC-1 and MIA PaCa-2. PSD/AuNR/DOX (20 μg Au and 1.25 μg DOX/mL) effectively destroyed these cells under near-IR laser irradiation (810 nm, 15 J·cm<sup>–2</sup> power, 90 s). Overall, we envision that PSD/AuNR may be a promising injectable, multifunctional nanovector for biomedical application
    corecore