149 research outputs found

    Characterization of the response of IHEP-IME LGAD with shallow carbon to Gamma Irradiation

    Full text link
    Low Gain Avalanche Detectors (LGAD), as part of High-Granularity Timing Detector (HGTD), is crucial to reducing pileup in the upgrading to HL-LHC. Many studies have been done on the bulk damages of the LGAD. However, there's no study about the surface radiation hardness of the LGAD sensors with carbon implanted. The IHEP-IME LGAD version 3 with the shallow carbon and different interpad separations were irradiated up to 2 MGy by gamma irradiation. The performance of the IHEP-IME LGAD version 3 before and after irradiation had been tested, such as the leakage current, break-down voltage, capacitance, Vgl_{gl}, and inter-pad resistance. The results showed that apart from minor fluctuations in some samples, no significant changes concerning inter-pad separation were observed before and after irradiation. Leakage current and break-down voltage increase after irradiation, which is considered due to surface passivation; the overall inter-pad resistance are larger than $10^9\ \Omegabeforeandafterirradiation;capacitanceisfoundtobelessthan4.5pFwithaslightdropinV before and after irradiation; capacitance is found to be less than 4.5 pF with a slight drop in V_{gl}$ after irradiation. All parameters meet the requirements of HGTD, and the results indicated that IHEP-IME LGAD v3 has excellent anti-irradiation performance

    Metabolic Engineering to Improve Docosahexaenoic Acid Production in Marine Protist Aurantiochytrium sp. by Disrupting 2,4-Dienoyl-CoA Reductase

    Get PDF
    Docosahexaenoic acid (DHA) has attracted attention from researchers because of its pharmacological and nutritional importance. Currently, DHA production costs are high due to fermentation inefficiency; however, improving DHA yield by metabolic engineering in thraustochytrids is one approach to reduce these costs. In this study, a high-yielding (53.97% of total fatty acids) DHA production strain was constructed by disrupting polyunsaturated fatty acid beta-oxidation via knockout of the 2,4-dienyl-CoA reductase (DECR) gene (KO strain) in Aurantiochytrium sp. Slight differences in cell growth was observed in the wild-type and transformants (OE and KO), with cell concentrations in stationary of 2.65×106, 2.36×106 and 2.56×106 cells mL-1 respectively. Impressively, the KO strain yielded 21.62% more neutral lipids and 57.34% greater DHA production; moreover, the opposite was observed when overexpressing DECR (OE strain), with significant decreases of 30.49% and 64.61%, respectively. Furthermore, the KO strain showed a prolonged DHA production period with a sustainable increase from 63 to 90 h (170.03 to 203.27 mg g−1 DCW), while that of the wildtype strain decreased significantly from 150.58 to 140.10 mg g−1 DCW. This new approach provides an advanced proxy for the construction of sustainable DHA production strains for industrial purposes and deepens our understanding of the metabolic pathways of Aurantiochytrium sp

    Design and Evaluation of a Smooth-Locking-Based Customizable Prosthetic Knee Joint

    Get PDF
    Limb loss affects many people from a variety of backgrounds around the world. The most advanced commercially available prostheses for transfemoral amputees are fully active (powered) designs but remain very expensive and unavailable in the developing world. Consequently, improvements of low-cost, passive prostheses have been made to provide high-quality rehabilitation to amputees of any background. This study explores the design and evaluation of a smooth-locking-based bionic knee joint to replicate the swing phase of the human gait cycle. The two-part design was based on the condyle geometry of the interface between the femur and tibia obtained from magnetic resonance (MR) images of the human subject, while springs were used to replace the anterior and posterior cruciate ligaments. A flexible four-bar linkage mechanism was successfully achieved to provide not only rotation along a variable instantaneous axis but also slight translation in the sagittal plane, similar to the anatomical knee. We systematically evaluated the effects of different spring configurations in terms of stiffness, position, and relaxion length on knee flexion angles during walking. A good replication of the swing phase was achieved by relatively high stiffness and increased relaxation length of springs. The stance phase of the gait cycle was improved compared to some models but remained relatively flat, where further verification should be conducted. In addition, 3D printing technique provides a convenient design and manufacturing process, making the prosthesis customizable for different individuals based on subject-specific modeling of the amputee’s knee

    Beam test of a 180 nm CMOS Pixel Sensor for the CEPC vertex detector

    Full text link
    The proposed Circular Electron Positron Collider (CEPC) imposes new challenges for the vertex detector in terms of pixel size and material budget. A Monolithic Active Pixel Sensor (MAPS) prototype called TaichuPix, based on a column drain readout architecture, has been developed to address the need for high spatial resolution. In order to evaluate the performance of the TaichuPix-3 chips, a beam test was carried out at DESY II TB21 in December 2022. Meanwhile, the Data Acquisition (DAQ) for a muti-plane configuration was tested during the beam test. This work presents the characterization of the TaichuPix-3 chips with two different processes, including cluster size, spatial resolution, and detection efficiency. The analysis results indicate the spatial resolution better than 5 μm\mu m and the detection efficiency exceeds 99.5 % for both TaichuPix-3 chips with the two different processes

    Leakage current simulations of Low Gain Avalanche Diode with improved Radiation Damage Modeling

    Full text link
    We report precise TCAD simulations of IHEP-IME-v1 Low Gain Avalanche Diode (LGAD) calibrated by secondary ion mass spectroscopy (SIMS). Our setup allows us to evaluate the leakage current, capacitance, and breakdown voltage of LGAD, which agree with measurements' results before irradiation. And we propose an improved LGAD Radiation Damage Model (LRDM) which combines local acceptor removal with global deep energy levels. The LRDM is applied to the IHEP-IME-v1 LGAD and able to predict the leakage current well at -30 ∘^{\circ}C after an irradiation fluence of Φeq=2.5×1015 neq/cm2 \Phi_{eq}=2.5 \times 10^{15} ~n_{eq}/cm^{2}. The charge collection efficiency (CCE) is under development

    Implementation and performances of the IPbus protocol for the JUNO Large-PMT readout electronics

    Full text link
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large neutrino detector currently under construction in China. Thanks to the tight requirements on its optical and radio-purity properties, it will be able to perform leading measurements detecting terrestrial and astrophysical neutrinos in a wide energy range from tens of keV to hundreds of MeV. A key requirement for the success of the experiment is an unprecedented 3% energy resolution, guaranteed by its large active mass (20 kton) and the use of more than 20,000 20-inch photo-multiplier tubes (PMTs) acquired by high-speed, high-resolution sampling electronics located very close to the PMTs. As the Front-End and Read-Out electronics is expected to continuously run underwater for 30 years, a reliable readout acquisition system capable of handling the timestamped data stream coming from the Large-PMTs and permitting to simultaneously monitor and operate remotely the inaccessible electronics had to be developed. In this contribution, the firmware and hardware implementation of the IPbus based readout protocol will be presented, together with the performances measured on final modules during the mass production of the electronics

    Mass testing of the JUNO experiment 20-inch PMTs readout electronics

    Full text link
    The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose, large size, liquid scintillator experiment under construction in China. JUNO will perform leading measurements detecting neutrinos from different sources (reactor, terrestrial and astrophysical neutrinos) covering a wide energy range (from 200 keV to several GeV). This paper focuses on the design and development of a test protocol for the 20-inch PMT underwater readout electronics, performed in parallel to the mass production line. In a time period of about ten months, a total number of 6950 electronic boards were tested with an acceptance yield of 99.1%

    Validation and integration tests of the JUNO 20-inch PMTs readout electronics

    Full text link
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large neutrino detector currently under construction in China. JUNO will be able to study the neutrino mass ordering and to perform leading measurements detecting terrestrial and astrophysical neutrinos in a wide energy range, spanning from 200 keV to several GeV. Given the ambitious physics goals of JUNO, the electronic system has to meet specific tight requirements, and a thorough characterization is required. The present paper describes the tests performed on the readout modules to measure their performances.Comment: 20 pages, 13 figure
    • …
    corecore