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Docosahexaenoic acid (DHA) has attracted attention from researchers because of its 
pharmacological and nutritional importance. Currently, DHA production costs are high 
due to fermentation inefficiency; however, improving DHA yield by metabolic engineering 
in thraustochytrids is one approach to reduce these costs. In this study, a high-yielding 
(53.97% of total fatty acids) DHA production strain was constructed by disrupting 
polyunsaturated fatty acid beta-oxidation via knockout of the 2,4-dienyl-CoA reductase 
(DECR) gene (KO strain) in Aurantiochytrium sp. Slight differences in cell growth was 
observed in the wild-type and transformants (OE and KO), with cell concentrations in 
stationary of 2.65×106, 2.36×106 and 2.56×106 cells mL-1 respectively. Impressively, 
the KO strain yielded 21.62% more neutral lipids and 57.34% greater DHA production; 
moreover, the opposite was observed when overexpressing DECR (OE strain), with 
significant decreases of 30.49% and 64.61%, respectively. Furthermore, the KO strain 
showed a prolonged DHA production period with a sustainable increase from 63 to 90 h 
(170.03 to 203.27 mg g−1 DCW), while that of the wildtype strain decreased significantly 
from 150.58 to 140.10 mg g−1 DCW. This new approach provides an advanced proxy 
for the construction of sustainable DHA production strains for industrial purposes and 
deepens our understanding of the metabolic pathways of Aurantiochytrium sp.

Keywords: omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA), PUFA beta-oxidation, 2,4-dienoyl-
CoA reductase (DECR), Aurantiochytrium sp.

INTRODUCTION

Docosahexaenoic acid (DHA, C22:6) is an omega-3 polyunsaturated fatty acid (PUFA) that exists in 
a wide range of organisms, from unicellular microorganisms to mammals (Abedi and Sahari, 2014; 
Snetselaar et al., 2021). Recently, DHA has garnered attention because of its pharmacological and 
nutritional activities, such as enhancing brain and retina development (Bazan, 2005) and ability 
to reduce hypertension (Boyer-Diaz et al., 2020), atherosclerosis (Liu et al., 2016), schizophrenia 
(Harper et al., 2011), hypertriglyceridemia (Kelley et al., 2009), and cancer risk (Newell et al., 2017). 
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Industrial-scale DHA production uses fish oils, although the 
primary producers are mainly thraustochytrids and microalgae 
(Raghukumar, 2008; Gupta et al., 2012). Overfishing and global 
warming are causing a decline in fish populations, which will 
result in a disturbance to the DHA demand and supply flow 
chain. The fatty acid profiles of microalgae are stable and 
vegetarian algal oil has excellent bioequivalence and safety, is a 
suitable alternative for DHA production (Arterburn et al., 2007; 
Rahmawaty et al., 2013). The omega-3 PUFA market was valued 
at approximately 4.3 billion USD in 2019 (Aasen et al., 2016); 
however, a gradual increase in water temperature due to climate 
change may result in a loss of up to 58% of globally available 
DHA by 2100 (Colombo et  al., 2020). Thus, the development 
of a sustainable production method for DHA via genetically 
engineered marine microorganisms is crucial.

Marine protists are regarded as one of the most 
promising sources for omega-3 PUFAs, including DHA 
and eicosapentaenoic acid (EPA) (Abdel-Mawgoud and 
Stephanopoulos, 2018; Xu et  al., 2020), owing to their high 
growth rate, excellent production density, and minimal 
occupation of farmland. Strains such as Schizochytrium 
mangrovei SM3 (Pleissner et  al., 2013), Thraustochytrium sp. 
ATCC 20889 (Jiang et al., 2004), and Ulkenia TC 010 (Chang 
et  al., 2012) have shown great potential, with contents of 
24.00%, 26.00%, and 37.50% DHA of the total fatty acids 
(TFAs), respectively (Fossier Marchan et  al., 2018; Morabito 
et  al., 2019). Aurantiochytrium sp. is a promising DHA-
producing candidate among microalgae, accumulating up to 
54.0% DHA of total fatty acids (TFAs) (Dellero et  al., 2018). 
In Aurantiochytrium sp., the fatty acid synthase (FAS) route 
and the polyketide synthase (PKS) pathway are both involved 
in DHA synthesis (Metz et  al., 2001). The FAS process uses 
a cascade enzymatic reaction of elongase and desaturase to 
generate fatty acids (Morabito et  al., 2019), whereas the PKS 
pathway follows dehydration and isomerization employing 
fatty acid acyl intermediates for carbon chain elongation 
(Gupta et  al., 2012). As DHA is a secondary metabolite that 
can be utilized as a carbon source, the accumulation of DHA 
in the cell is affected by anabolism and catabolism (beta-
oxidation) (Sprecher, 2002). The beta-oxidation of DHA mainly 
occurs in peroxisome and mitochondria, consisting of four 
reaction cycles, namely oxidation, hydration, dehydrogenation, 
and thiolysis (Schulz, 1991). Unlike the beta-oxidation of 
saturated fatty acids (SFAs), the catabolism of DHA involves 
an oxidative and reductive reaction on the double bond at 
position four (Sprecher, 2002). To oxidize DHA, 2,4-dienoyl-
CoA reductase (DECR) is necessary for reducing 2-trans-
4,7,10,13,16,19-heptaenoyl-CoA, followed by the isomerization 

of 3,7,10,13,16,19-hexenoyl-CoA (Sprecher, 2002) and 2-trans-
7,10,13,16,19-hexenoyl-CoA formation (shown in Figure 1A). 
This process clearly indicates the crucial role of DECR in DHA 
beta-oxidation.

2,4-Dienoyl-CoA reductase (DECR) is a peroxisomal 
NADPH coenzyme-dependent oxidoreductase, converting 
2,4-dienoyl-CoA into 3-enoyl-CoA (Gurvitz et  al., 1997). 
During the peroxisomal beta-oxidation of arachidonic 
acid (AA), delta-3,5-delta-2,4-dienoyl-CoA isomerase and 
2,4-dienoyl-CoA reductase are required to remove double 
bonds from odd-numbered carbons (Luthria et  al., 1995). At 
present, DECR has been identified and cloned in mammals 
(Shirley and Murphy, 1990; Koivuranta et al., 1994; Das et al., 
2000), plants (Goepfert et  al., 2005), fungus (Dommes et  al., 
1983; Gurvitz et  al., 1997; Mastalski et  al., 2020), bacteria 
(Dommes and Kunau, 1984; He et  al., 1997; Ogawa et  al., 
2020), and parasites (Semini et  al., 2020). The bacterium-like 
peroxisomal 2,4-dienoyl-CoA reductase gene (DECR) mutant 
of Leishmania spp. could not oxidize unsaturated fatty acids 
(UFAs) and consequently accumulated the intermediate 
2,4-decadienoyl-CoA (Semini et  al., 2020). The knockout 
of bacterial-FadH encoding 2,4-dienoyl-CoA reductase in 
Shewanella livingstonensis Ac10 reduced the conversion rate 
of DHA to EPA by 86.00% (Ogawa et  al., 2020). DECR was 
considered to participate in controlling the balance between 
SFAs and UFAs. The deletion of DECR in LNCaP cells resulted 
in higher PUFAs, particularly AA and DHA (Blomme et  al., 
2020). In addition to the enzymes required for saturated fatty 
acid beta-oxidation, DECR might have an auxiliary effect on the 
beta-oxidation of DHA (Schulz and Kunau, 1987). Although 
previous literature on lipid enhancement focused mainly on 
the disruption of lipid homeostasis through the loss of DECR 
in mammal animals (Mäkelä et al., 2019; Blomme et al., 2020), 
there are a lack of data on the regulatory effects of DECR on the 
PUFA yields in the primary producer thraustochytrids.

To explore a new proxy to improve DHA production 
yield and efficiency, an engineered strain (KO strain) was 
constructed by disrupting PUFA beta-oxidation via knocking 
out 2,4-dienyl-CoA reductase (DECR) gene that has been 
detected in Aurantiochytrium sp. SZU445 genome (Zhu et al., 
2020). To clarify the effects of DECR on the accumulation of 
PUFAs in Aurantiochytrium sp., the DECR overexpressed (OE) 
strain was also constructed. The fatty acid profiles and yields 
(neutral lipids, total FAs, total UFAs, and DHA) in various 
growth stages were investigated to explore how DECR regulates 
the flux of PUFA metabolism. This aim of this study was to 
produce a foundation for the use of genetic engineering to 
construct an efficient oleaginous protist to achieve high yields 
of DHA.

MATERIALS AND METHODS

Strain Cultivation
Aurantiochytrium sp. SZU445 was obtained by UV mutagenesis 
of Aurantiochytrium sp. PKU#Mn16 (Liu et al., 2020). The culture 
conditions were same as those in our previously reported study 

Abbreviations: PUFA, Polyunsaturated fatty acid; TAG, Triacylglycerol; DHA, 
Docosahexaenoic acid; LP, Lipid particle; PCR, Polymerase chain reaction; SD, 
Standard deviation; DECR, 2,4-dienoyl-CoA reductase; IS, delta-3,5-delta-2,4-
dienoyl-CoA isomerase; GC-MS, gas chromatography–mass spectrometry; 
RFU, Relative fluorescence units; NADPH, Nicotinamide adenine dinucleotide 
phosphate; PKS, Polyketide synthase; FAS, Fatty acid synthase; DAG, 
Diacylglycerol; AA, Arachidonic acid; EPA, Eicosapentaenoic acid; SFA, Saturated 
fatty acid; UFA, Unsaturated fatty acid; DAG, Diacylglycerol; TCA, Tricarboxylic 
acid; HR, Homologous recombination.
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(Zhu et al., 2020). To measure growth curves, the strain was 
inoculated in M4 medium at 23°C in a shaker with a speed 
of 200 rpm (IS-RDS6, CRYSTAL, Suzhou, China). Natural 
seawater containing 1 g L−1 yeast extract, 15 g L−1 agar, 20 g 
L−1 glucose, 0.025  g L−1 monopotassium phosphate, 0.3 mg 
mL−1 zeocin, and 1.5 g L−1 peptone served as the transformant 
screening medium.

Plasmid Construction and Cloning
The expression vector pREMI-Z (Addgene ID 59527) 
containing TEF1 promoter, the BleoR gene, and CYC1 
terminator was used in this study (Mukaiyama et  al., 2002). 

The vector was constructed by inserting the fusion expression 
of enhanced green fluorescent protein (EGFP) gene after 
BleoR. The fusion between BleoR and eGFP was generated 
by “ggtggtggt”, with six His tags used after the eGFP gene for 
purification. The sequential connection of TEF1 promoter–
EM7 promoter–BleoR–EGFP–CYC1 terminator as the basic 
frame (BF) (Additional file 1: Figure S1) was optimized by 
thraustochytrids codons and synthesized by GENERAL BIOL 
company (Anhui, China). The basic frame (BF) was amplified 
from pBluescript SK (+) using KOD DNA polymerase (KFX-
101B, TOYOBO, Osaka, Japan) with the primer pair BOX-F2/
BOX-R2 (Additional file 2: Table S1). The rDNA is highly 

A

B

DC

FIGURE 1 |   Pathway, approach, and plasmid identification. (A) The pathway of DHA beta-oxidation. The orange letters indicate enzymes involved in standard 
beta-oxidation: acetyl-CoA dehydrogenase (a), enoyl-CoA hydratase (b), hydroxyacyl-CoA dehydrogenase (c), and beta-ketothiolase (d), respectively. Created with 
Chemdraw 20.0. (B) Approach to study the effect of DECR on fatty acids. The upstream and downstream homology arms of the overexpression (OE) cassette 
contain 18s rDNA, those of the knockout (KO) cassette contain DECR. After transformation, the transformants of DECR-OE and DECR-KO were screened with 
Zeocin and analyzed. Created with BioRender.com. (C) and (D) Identification of the pBlunt plasmid containing DECR overexpression (OE) and knockout (KO) 
cassettes in E. coli with the primer pair M13F/M13R by PCR, respectively. (C) The 3930 bp band indicates the amplification of the DECR overexpression cassette. 
Numbers 1 to 10 represent the colony numbers of the OE plasmids in E.coli. (D) The 2817 bp band indicates the amplification of the DECR knockout cassette. 
Numbers 1 to 7 represent the colony numbers of the corresponding plasmids in E.coli. M, DL5000 DNA Marker.
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conserved, with multiple copies, and feasible as an insertion 
site for homologous recombination (HR) (Amador et  al., 
2000; Cheng et al., 2011). The sequence of Aurantiochytrium sp. 
SZU445 18s rDNA (GenBank: MT232522.1) (Liu et  al., 2020; 
Zhu et al., 2020) was amplified with the primer pair 18S-F/18S-R. 
The sequence of DECR was amplified from Aurantiochytrium sp. 
SZU445 genome with primers DECR-F/DECR-R (Additional 
file 2: Table S1).

For the construction of the DECR overexpression cassette, the 
505 bp 18s rDNA upstream and 505 bp 18s rDNA downstream 
were amplified with primers OEP1-F/OEP1-R and OEP5-F/
OEP5-R, respectively (Figure  1B). DECR in the OE-P3 was 
amplified with primers OEP3-F/OEP3-R (Additional file 2: 
Table S1). The OE-P2 containing TEF1-EM7-BleR was amplified 
with primers OEP2-F/OEP2-R, whereas the OE-P4 containing 
EGFP-CYC1 was amplified with primers OEP4-F/OEP4-R. The 
overexpression cassette was assembled from the OE-P1, OE-P2, 
OE-P3, OE-P4, and OE-P5 sequences by overlap polymerase 
chain reaction (PCR) with KOD DNA polymerase. On both 
sides of the basic frame (BF), 800 bp DECR homologous flanks 
for the DECR gene knockout were inserted (Figure 1B). The 400 
bp DECR upstream and 400bp DECR downstream homologous 
flank were amplified from the DECR gene with the primer pairs 
KOP1-F/KOP1-R and KOP3-F/KOP3-R, respectively. The KO-P2 
was amplified with the primer pair KOP2-F/KOP2-R using BF as 
a template. The knockout cassette was assembled as the KO-P1, 
KO-P2, and KO-P3 sequence by overlapping PCR with KOD 
DNA polymerase. The DECR overexpression (OE) and knockout 
(KO) cassette were ligated with pEASY-Blunt (TransGen Biotech, 
Beijing, China) and transformed into DH5-alpha E. coli (named 
as pDECR-OE and pDECR-KO, respectively). The fragments 
were confirmed from single colonies by PCR with the primer 
pair M13F/M13R and sequenced by Sangon Biotech Company 
(Shanghai, China).

Transformation and Identification
After verifying the construct by sequencing, the linear OE and 
KO cassette DNA for transforming Aurantiochytrium sp. strains 
was amplified by PCR from the construct with the primer pairs 
OEP1-F/OEP5-R and KOP1-F/KOP3-R, respectively. Linear 
OE and KO cassettes were transferred to Aurantiochytrium 
sp. SZU445, following the established protocol (Cheng et  al., 
2011) with some modification. Briefly, 5–10 μg linear DNA and 
80 μL cells were added into the 0.2-cm cuvette, followed by an 
electroporation pulse (1500  V, 200 Ω, and 50 μF). Following 
electroporation, the solution was recovered in 1 mL M4 liquid 
medium and incubated at 23°C, with shaking at 200 rpm, for 
24 h.

The transformants were selected by plating on M4 solid 
medium with 0.3 mg mL−1 Zeocin at 23°C. The transformants 
genome was extracted with yeast genome extraction kit (D2500, 
Omega, USA) and identified by PCR using primers BOX-F2/
BOX-R2 (Additional file 2: Table S1). The green fluorescence 
of eGFP was used to determine the overexpressed and knockout 
mutants via laser scanning with a confocal microscope (LSM 
710 NLO, ZEISS, Germany). A 488 nm argon laser line was used 

as the excitation source, and the detector was set at 509 nm for 
eGFP mutants.

Cell Growth and Biomass Determination
Strains were inoculated in a 250-mL flask containing 100 mL of 
culture medium using a 10% (v/v) inoculation ratio. To analyze 
biomass and construct growth curves, we controlled the initial 
cell density of starting culture to be 2 × 104 cells mL-1. Triplicate 
cell samples were collected from each flask at regular intervals. 
The biomass was expressed as the number of cells counted using 
a hemocytometer microscope (DM500, Leica, Germany).

Nile Red Staining of Neutral Lipids
Neutral lipids were stained with Nile red (Rhawn, Shanghai, 
China) and analyzed using a fluorescent microplate reader 
(excitation at 488 nm and emission at 592 nm) (Synergy H1, Bio-
Tek, USA) (Chen et al., 2009; Wang et al., 2020). One milliliter 
of collected cell culture broth with different growth phases was 
stained with 10 μL Nile red (0.1 mg mL−1 in acetone). The cells 
were incubated in an orbital shaker at 200 rpm in the dark for 
20  min at 23°C before confocal microscopy (LSM 710 NLO, 
ZEISS, Germany). From the test samples, blank controls (cells 
incubated without Nile red stain) were subtracted. Data were 
expressed as the Nile red fluorescence ratio of transformants (OE 
and KO) to WT.

Fatty Acids Yield and Composition 
Analysis
The cultured cells were collected by centrifugation at 6000 
rpm for 10  min followed by freeze-drying for 72  h using a 
freeze dryer (10N, SCIENTZ, Ningbo, China) (Liu et  al., 
2020). Then, 500 mg of freeze-dried cells was extracted with 
chloroform: methanol (ratio 2:1 v/v) in a Soxhlet extractor 
(AG-SXT-06, OUGE, Shanghai, China) at 65°C for 60  h. 
After extraction, the samples were prepared according to our 
previously reported method (Li et al., 2020). Crude total lipids 
were collected after solvent evaporation at 65°C for 15  min. 
The fatty acid methyl esters (FAMEs) were obtained by adding 
4 mL of 4% sulfuric acid in methanol to crude total lipids at 
65°C for 1 h. The FAMEs were then extracted twice with 2 mL 
n-hexane and deionized water. Subsequently, n-hexane was 
volatilized in a nitrogen stream to obtain methyl esterified 
fatty acids (MEFs). The MEFs were dissolved in 1 mL of 
dichloromethane for analysis by gas chromatography–mass 
spectrometry (GC-MS, 7890-5975 Agilent, Santa Clara, CA, 
USA).

FAMEs were analyzed using the HP-5MS GC column 
(30.0  m × 250 µm, I.D. × 0.25 µm film thickness, Agilent) 
with a maximum temperature of 350°C. The inlet temperature 
was set to 250°C. Helium was used as a carrier gas. Constant 
pressure mode was used with a split ratio of 10:1. One 
microliter of each FAME sample was injected into the column. 
The column temperature was increased from 60°C to 180°C 
at a constant rate of 25°C per minute, then to 240°C at a rate 
of 3°C min−1, held for 1  min at 240°C, and then finally was 
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raised to 250°C at a constant rate of 5°C per minute. The 
mass spectrum was collected by full scan mode detection. 
Fatty acids were identified by using National Institute of 
Standards and Technology (NIST) mass spectral library. As 
an internal standard, nonadecanoic acid (Solarbio, Beijing, 
China) was employed according to Li et  al. (Li et  al., 2020), 
and the fatty acid content was determined by comparison of 
internal standard peak areas. All samples used were analyzed 
in triplicate.

Statistical Analysis
All experiments were performed in triplicate, and the data 
were presented as the mean and standard deviation (SD). 
GraphPad Prism (version 8.0.2) was used for data analysis. Two-
way ANOVA and Duncan’s multiple range test at the p < 0.05 
(confidence level) were used to determine differences between 
groups. Different numbers of asterisks (*) above each columns 
indicate significant differences at p < 0.05.

RESULTS

Plasmid Construction and Selection of 
Transgenic Strains
To generate DECR overexpression and knockout mutants 
in Aurantiochytrium sp. SZU445, we transformed cells with 
expression cassettes that harbored a Zeocin antibiotic resistance 
cassette with 800–1010 bp flanks homologous to the upstream 
and downstream ends of the insertion site locus for fragment 
exchange (Figure  1B). The 1010 bp 18s rDNA homologous 

flanks were designed to replace 577 bp of the 1786 bp long 18s 
rDNA gene with an overexpression cassette containing Zeocin 
resistance, DECR, and eGFP. Simultaneously, the 800 bp DECR 
homologous flanks were designed to replace 100 bp of the 900 
bp long DECR gene with a knockout cassette containing the 
eGFP gene and zeocin resistance. The overexpression cassette 
(total length 3764 bp) and knockout cassette (2651 bp) were 
constructed and identified with the primer pair M13F/M13R 
by PCR (Figures 1C, D). Finally, the cassette was sequenced 
to verify its completeness and correctness.

The resistance screening experiment (Additional file 
1: Figure S2) showed that 0.3 mg mL−1 Zeocin resulted in 
cell death of Aurantiochytrium sp. SZU445 (wildtype, WT). 
Thus, 0.3 mg mL−1 Zeocin was used for resistance screening 
throughout the experiments. The PCR-amplified linear 
overexpression and knockout cassettes were successfully 
transformed into WT cells via electroporation. The DECR 
overexpression transformants (hereinafter referred to as OE) 
and knockout transformants (hereinafter referred to as KO) 
were selected on solid M4 medium with 0.3 mg mL−1 Zeocin 
(Figure  2A). The Zeocin-resistant strains were confirmed 
via PCR using primers (BOX-F2/BOX-R2) that bound to 
the fragment between the TEF1 promoter and the CYC1 
terminator in the expression cassette. The expected PCR 
amplicon sizes of the OE and KO mutant colonies were 2754 
bp and 1851 bp, respectively (Figure 2B). A partial fragment 
alignment of the sequencing peak map of the transformant 
genome is shown in Additional file 1: Figure S3. The 
visualization of eGFP green fluorescence in the transformants 
(OE and KO) compared with WT confirmed the successful 
expression (Figure 2C).

A

B

C

FIGURE 2 | Obtaining and identifying the transformants. (A) Screening transformants through Zeomycin resistance (0.3 mg mL−1). Yellow clones were visible 
after 24–48 h, and transformants were kept in an M4 plate containing 0.3 mg mL−1 Zeomycin. Left, wildtype (WT) grown on an M4 solid plate. Centre and right, 
DECR overexpression (OE) and knockout (KO) mutants grown on M4 plates containing 0.3 mg mL−1 bleomycin, respectively. (B) PCR verification of transgenic 
Aurantiochytrium sp. SZU445 with OE-overlap and KO-overlap. Specific fragments of 2754 bp and 1851 bp were amplified from the genome of OE and KO 
transformants, respectively; 20, 32, 36, 37, 38, and 46 are the transformants with the OE cassette, and 9, 12, 23 are the transformants with the KO cassette. 
M, DL 5000 DNA Marker. (C) Confocal microscope observations of the green fluorescence produced by EGFP expression in OE and KO mutants. WT has no 
autofluorescence. Scale bar: 20 μm.
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Cell Growth and Impact of Overexpressed 
and Knockout DECR on Neutral Lipids
To explore the effect of DECR expression level on the growth of 
Aurantiochytrium sp. SZU445, the growth curves of wildtype 
(WT) and transformant (OE and KO) strains were compared. 
As shown in Figure  3A, the growth patterns were almost 
identical, with minor differences between transformants 
and the WT strain suggesting that knockout of DECR did 
not influence normal growth. After incubation for 22 h, the 
cell concentration was higher in the WT strain (by 1.03–1.26 
times) than in the transformants, although the KO strains 
had 1.08 times higher growth than the OE strain. From the 
growth curves of all the three strains, the growth period can 
divide as follows: after inoculation, the cultures strains were 
in the lag phase for 0–12 h, in the log phase for 12–38 h, in 
the exponential phase for 38–50 h, in the stationary phase for 
50–72 h; beyond 72 h, growth declined (the declining phase). 
Five periods (lag, log, exponential, stationary and declined 
phase) were represent respectively by different time points 
(12, 24, 42, 63 and 90 h) for follow-up researches.

The effect of DECR manipulation of neutral lipids was 
evaluated by assay of Nile red fluorescence in five growth 
phases. A significant difference was observed between 
the transformants and WT strains (Figure  3D). Shown as 
Figures  3B, 3C, the Nile red relative fluorescence (RFU) 
intensity of the KO strain was higher than that of the WT, 
whereas that of OE strain was lower than that of the WT in all 

observations. The RFU intensities of KO cells were the highest 
among all three strains, indicating the crucial effect of DECR 
on the accumulation of neutral lipids. The accumulation of 
neutral lipids in KO strain was 1.22-fold (p < 0.01) higher 
than WT strain at 90  h for 106 cells. At the same culture 
volume and cell concentration, the KO strains produced up to 
1.23 and 1.48 times more neutral lipids than the OE strains, 
respectively, indicating its major potential to be applied as the 
nutrient additive.

Fatty Acids Composition Analysis
Fatty acids at different growth stages (12, 24, 42, 63, and 90 h) 
were extracted and analyzed by GC-MS. Two predominant 
compositions (PA (C16:0) and DHA (C22:6)) for KO, OE, and WT 
were observed at various stages (Figures 4A–E). SFAs, especially 
PA, showed increased accumulation in the early growth stage 
(before 42  h). However, the UFAs, especially DHA, started to 
accumulate after 42 h accompanied by the decrease of SFAs at the 
same time period. In the exponential period (42 h) (Figure 4C), 
the abundance of DHA (C22:6) for the KO strain increased by 
135.87% (p < 0.0001) and 17.09% (p < 0.05) compared with the 
OE and WT strains, respectively. Meanwhile, the content of PA 
(C16:0) for the KO strain decreased by 56.29% (p < 0.01) and 
172.46% (p < 0.0001) compared with the WT and OE strain, 
respectively. This decrease indicated that DHA formation (C22:6) 
by consuming PA (C16:0) as a substrate was more efficient in the 
KO strains (Lee et al., 2015). Furthermore, the content of DHA 

A B

D

C

FIGURE 3 | Growth curves and determination of neutral lipids. (A) The growth curves of wildtype (WT) strain, DECR overexpression (OE), and DECR knockout (KO) 
transformants were determined over a total period of 162 h. (B) Nile red fluorescence ratio of transformants (OE and KO) to wildtype (WT) per milliliters of strain 
solution. (C) Nile red fluorescence ratio of transformants (OE and KO) to wildtype (WT) per 106 cells. (D) Nile red fluorescence observation of wild-type (WT) strain, 
DECR overexpression (OE), and DECR knockout (KO) transformants in five various periods. All data were collected from three independent experiments. Scale bar: 
20 μm. Values are the mean ± standard deviation.
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(C22:6) in KO strains was significantly higher (51.46%–53.98%) 
than that of WT in the stationary (63 h) (Figure 4D) and declining 
phases (90 h) (Figure 4E), with increases of up to 1.52-fold (p < 
0.01) and 1.57-fold (p < 0.001), respectively. Knockout of DECR 
substantially enhanced the DHA percentage (up to 54.00%) in 
the TFAs, while overexpressing DECR (OE strain) facilitated the 
beta-oxidation of PUFAs, leading to a lower proportion of DHA 
(36.43%–37.14%). These observations indicated that knockout of 
DECR is a practical approach for increasing the DHA percentage 
(of TFAs) in genetically engineered strains.

Fatty Acids Yield Analysis
The effects of DECR expression on total fatty acids (TFAs), 
omega-3 polyunsaturated fatty acids (n-3 PUFAs), and DHA was 

analyzed at various growth stages and the results are shown in 
Figure 5. In Aurantiochytrium sp., the predominant composition 
of n-3 PUFAs was DHA, accounting for 94.37%–98.41% in the 
WT, OE, and KO strains. Thus, the trend in DHA accumulation 
was quite similar to n-3 PUFAs in all strains. The WT strain 
had the highest total fatty acid production among three strains, 
followed by OE (Figure 5A). However, the n-3 PUFAs yield of 
the KO strain (208.96 mg g−1) was significantly higher (1.47-fold) 
than that in the WT strain, whereas that of the OE strain was 
reduced by 13.03% at 90 h (Figure 5B). These results validate the 
fatty acid profile analysis (Figure 4). The content of saturated fatty 
acids was higher in the WT and OE strains, while unsaturated 
fatty acids in KO strain predominates. The KO strain showed 
a dramatic increase, achieving 203.268 mg g−1 (90  h) for the 
DHA yield over the whole growth profile, which is 67.55% and 

A B
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FIGURE 4 | Fatty acid composition in various growth stages. (A–E) indicate the fatty acid composition of the wildtype (WT) strain, DECR overexpression (OE), 
DECR and knockout (KO) transformants detected by GC-MS after 12 h, 24 h, 42 h, 63 h, and 90 h, respectively. Data are shown as the percentage of total fatty 
acids (TFAs). C14:0, tetradecanoic acid; C15:0, pentadecanoic acid; C16:0, hexadecanoic acid; C17:0, heptadecanoic acid; C18:0, octadecanoic acid; C20:4, 
eicosatetraenoic acid; C20:5 eicosapentaenoic acid; C22:6, docosahexaenoic acid. Significant difference between wildtype strain (WT) and transformants (OE and 
KO) indicated at the p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), or p < 0.0001 (****) level. All data are expressed as the mean ± S.D. of three independent experiments.
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45.10% more than that of the OE (121.318 mg g−1) and WT 
(140.092 mg g−1) strain (Figure 5C). Interestingly, Figure 5C 
shows that the DHA accumulation in the KO strain exhibited 
a sustainable growth until 90 h, whereas the DHA yield in the 
OE and WT strains peaked at 63  h and decreased by 7.07% 
and 6.97% at 90 h, respectively. For the OE and WT strains, 
the DHA tended to decompose and was consumed from 63 h, 
which led to a lower final yield of DHA at 90  h. However, 
for the KO strain, the PUFA beta-oxidation was disrupted 
by DECR knockout; thus, DHA continuously accumulated 
until 90  h (19.55% increase compared with 63  h) with a 
higher final yield (1.68-fold and 1.45-fold more than the OE 
and WT strains). From these results, it can be projected that 
the fermentation period can be prolonged to continuously 
accumulate DHA by knocking out DECR to interrupt PUFA 
consumption in the late growth stage, thus achieving a higher 
yield.

DISCUSSION

Effect of DECR Disruption on the 
Enhancement of Neutral Lipids
The major neutral storage lipids in thraustochytrids are 
triacylglycerols (TAGs), which act as intracellular storage 
molecules for sterols, free fatty acids, and diacylglycerols 
(DAGs), as well as acting as a source of energy (Athenstaedt 
and Daum, 2006; Czabany et  al., 2007; Jain et  al., 2007; Du 
et al., 2021). The homeostasis of neutral lipids is maintained 

by hydrolases and synthetases, and the stored TAGs are 
hydrolyzed first into free fatty acids for energy consumption 
(Morabito et  al., 2019; You et  al., 2020). TAG accumulation 
is triggered under conditions of nitrogen deficiency at the 
end of growth (Yang et  al., 2013; Dellero et  al., 2018). The 
substantial physical connection between peroxisomes and 
liposomes allows lipolysis within liposomes to be coupled 
to peroxisomal fatty acid oxidation (Binns et  al., 2006). 
Therefore, it is reasonable to speculate that the disruption of 
peroxisome-located DECR (Dommes et al., 1981) impedes the 
beta-oxidation of fatty acids, which leads to the continuous 
increase in PUFA content and inhibition of the hydrolytic 
tendency of TAGs, thereby accumulating TAGs. By disrupting 
DECR, the reaction progresses towards the synthesis of 
TAGs owing to the accumulation of hydrolysates, which thus 
enhances the accumulation of neutral lipids (Figure 6).

Moreover, the neutral lipid content of DECR-overexpressing 
strain (OE) was 0.70 times that of wild-type at 24 h (Figure 3C). 
Phospholipids, one of the main components of biological 
membranes, are synthesized at the expense of storing lipid 
TAG during the exponential growth phase (Pascual et  al., 
2013). when TAG is decomposed to generate one molecule 
of DAG to synthesize phospholipids, and at the same time 
generate one molecule of free fatty acid (FFA) (Czabany et al., 
2007). We speculate that Overexpression of DECR breaks 
down more free fatty acids, and thus OE strains accelerate 
TAG decomposition due to continuous consumption of DAG 
and FFA products during exponential growth.

A B

D
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FIGURE 5 | The yield of different types of fatty acids. (A-C) are the contents of total fatty acids (TFAs), unsaturated fatty acids (UFAs), and docosahexaenoic acid 
(DHA) respectively. Data shown are the weight of fatty acids per gram dry cells weight (DCW). Arrows (green and red) indicate the trend in DHA yield from 63 h to 
90 h. Statistically significant differences between wildtype and transformants (OE and KO) were indicated at the p < 0.05 (*) and p < 0.01 (**) level. Values are the 
mean ± standard deviation.
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Effect of DECR Disruption on Prolonging 
the DHA Accumulation Period
DHA (C22:6) enrichment may help thraustochytrids achieve 
improved membrane buoyancy and increased antioxidant 
capacity (Jain et  al., 2007). The consumption of greater 
amounts of n-3 PUFAs (such as DHA) in the diet enhances 
the synthesis of cardioprotective and anti-inflammatory/
pro-resolving lipid mediators generated from n-3 PUFAs 
(Ostermann et  al., 2019). The accumulation of DHA in 
thraustochytrids is dynamic, determined by the net levels of 
synthesis and degradation (Figure 6). Fatty acids are usually 
utilized as an energy source for the initial growth period, 
whereas DHA is rapidly synthesized from the organic carbon 
present in the external medium via the PKS and FAS pathways 
in the stationary phase (Morabito et al., 2019). After nutrients 
are depleted, the DHA accumulated during the stationary 
phase becomes a readily available energy source during the 
declining phase as a result of beta-oxidation (Jain et  al., 
2007). The above results suggest that the disruption of DECR 
extends the DHA accumulation period (Figure  5C). DHA 
accumulation reached a peak in the stationary phase (63  h) 
in the WT and OE strains but continued to grow steadily in 
the declining phase (90 h) in KO strains. DECR is an essential 
enzyme required for the beta-oxidation of PUFAs (Sprecher, 
2002); the disruption of DECR blocks beta-oxidation by 
eliminating the double bond at C4, thus reducing the 
utilization of DHA as an energy source. Although acetyl-CoA 
acts as a byproduct obtained from the degradation of other 
fatty acids, it is also used for DHA synthesis. The rate of DHA 
synthesis is higher than DHA decomposition, so the KO strain 
keeps accumulating DHA, even in the declining phase. The 
WT and OE strains tend to degrade DHA during starvation in 
the declining phase (Coutteau and Mourente, 1997; Jain et al., 

2007), resulting in a slight reduction in accumulation (6.97% 
and 7.07%, respectively, compared to the stationary phase). In 
contrast, the KO strain appeared to prolong the accumulation 
period of DHA, possibly producing more DHA during the 
fermentation process; thus, this is a potential replacement for 
fish oil as a dietary supplement for n-3 PUFAs.

Other functions of DECR were also reported in the 
previous researches, including inhibition of gluconeogenesis 
(Miinalainen et al., 2009), antibacterial activity (Semini et al., 
2020), and antitumor (Blomme et  al., 2020; Gajewski et  al., 
2020). In the current study, we achieved high DHA accumulation 
and prolonged accumulation time by blocking beta-oxidation 
via the downregulation of DECR in Aurantiochytrium sp. In 
addition to enzymes on the beta-oxidation pathway, the PPAR 
pathway (Tahri-Joutey et al., 2021) and regulators (Xu et al., 
2020) can be used to regulate the beta-oxidation. In further 
research, it is vital to apply this genetic engineering strategy to 
other enzymes in regulating the rate of beta-oxidation pathway, 
to explore their great potential to improve the accumulation of 
PUFAs. Moreover, production of DHA using thraustochytrids 
may be more sustainable than farming fish and cheaper than 
oilseeds crops (Salem and Eggersdorfer, 2015). The DHA 
yield enhancement in thraustochytrids obtained by various 
strategies thus far has been 97.10% in Schizochytrium sp. by 
multi-stage continuous fermentation (Guo et al., 2018), 83.20% 
via atmospheric and room temperature plasma mutagenesis 
of Aurantiochytrium sp. (Wang et  al., 2022), and 1.18-fold by 
co-culture of Schizochytrium sp. and Rhodotorula glutinis (Sahin 
et  al., 2018). By DECR knockout, we report a 46.80% increase 
in DHA accumulation in Aurantiochytrium sp. Thus, our genetic 
engineering strategy can be combined with other approaches to 
construct an efficient strain for DHA synthesis on an industrial 
scale and provide more sustainable n-3 PUFA supplements.

FIGURE 6 | The effect of DECR disruption on the accumulation of PUFAs. The blue downward arrow implies that DECR was knocked down. Red upward 
arrows indicate increased product accumulation and interrupted lines indicate diminished responses. The orange letters refer to enzymes involved in standard 
beta-oxidation: acetyl-CoA dehydrogenase (A), enoyl-CoA hydratase (B), hydroxyacyl-CoA dehydrogenase (C), and beta-ketothiolase (D), respectively. DECR, 
2,4-dienoyl-CoA reductase; IS, delta-3,5-delta-2,4-dienoyl-CoA isomerase; DAG, diacylglycerol; TAG, triacylglycerol; PKS, polyketide synthase; FAS, fatty acid 
synthase; TCA, tricarboxylic acid. Created with BioRender.com.
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CONCLUSION

In this study, using homologous recombination to construct the 
transformants DECR knockout (KO) and overexpression (OE), 
the mechanism through which DECR affected the omega-3 
PUFAs was thoroughly explored. By disrupting DECR expression, 
the DHA accumulation period was significantly prolonged (from 
63  h to 90  h) with enhanced yields of neutral lipids, omega-3 
PUFAs, and DHA up to 1.22-, 1.47-, and 1.45-fold compared 
to WT, respectively. In contrast, DECR overexpression led to 
the significant inhibition of FA production, with neutral lipids, 
omega-3 PUFAs, and DHA decreased by up to 30.52%, 65.38%, 
and 65.61%, respectively. This study confirmed the essential role 
of DECR in the accumulation of omega-3 PUFAs, especially 
DHA, and proposed a new strategy for the pursuit of sustainable 
renewable biofuels through marine protists.
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