33 research outputs found

    Traffic-Adaptive Spectrum Leasing Between Primary and Secondary Networks

    No full text

    Concept of an Accelerator-Driven Advanced Nuclear Energy System

    No full text
    The utilization of clean energy is a matter of primary importance for sustainable development as well as a vital approach for solving worldwide energy-related issues. If the low utilization rate of nuclear fuel, nuclear proliferation, and insufficient nuclear safety can be solved, nuclear fission energy could be used as a sustainable and low-carbon clean energy form for thousands of years, providing steady and base-load electrical resources. To address these challenges, we propose an accelerator-driven advanced nuclear energy system (ADANES), consisting of a burner system and a fuel recycle system. In ADANES, the ideal utilization rate of nuclear fuel will be >95%, and the final disposal of nuclear waste will be minimized. The design of a high-temperature ceramic reactor makes the burner system safer. Part of fission products (FPs) are removed during the simple reprocessing in the fuel recycle system, significantly reducing the risks of nuclear proliferation of nuclear technology and materials. The ADANES concept integrates nuclear waste transmutation, nuclear fuel breeding, and safety power production, with an ideal closed loop operation of nuclear fission energy, constituting a major innovation of great potential interest for future energy applications

    Evolution and Efficiency Assessment of Pesticide and Fertiliser Inputs to Cultivated Land in China

    No full text
    Excessive use of pesticides and fertilisers has been a key issue limiting sustainable agricultural development. China is a typical pesticide- and chemical-fertiliser-dependent agricultural production area. We have matched the target indicators related to sustainable agricultural development (SDG1 and SDG2) and analysed the gap between China and four developed countries in terms of fertiliser and pesticide use intensity and efficiency from 2002 to 2016. We have used an improved Logarithmic Mean Divisia Index model and cluster analysis to identify the factors and effects driving increased pesticide and fertiliser inputs in China, and we discuss the exploratory effects of different provinces in reducing pesticide and fertiliser application and increasing efficiency. The findings reveal that (1) China is a typical pesticide- and fertiliser-dependent agricultural production area. The average combined fertiliser application efficiency in China from 2002 to 2016 was only 28% of that of the Netherlands, and the country’s average combined pesticide application efficiency was only 35% of that of the USA. (2) The most important of the three main drivers of the increase in pesticide and fertiliser inputs in China is the value added of the primary industry, contributing 56% for the period 2007–2016. (3) Further analysis at the provincial level according to four types—high-intensity high-yield type, high-intensity low-yield type, low-intensity high-yield type, and low-intensity low-yield type—clarified the provinces that should be focused on at the national level in terms of pesticide and fertiliser application reduction and efficiency increase in the future

    Study of the Spatio-Temporal Variation of Agricultural Sustainability at National and Provincial Levels in China

    No full text
    As an important pillar of human civilization, the development of agriculture has gradually become the focus of the international community to solve the development dilemma and promote the implementation of the global Sustainable Development Goals (SDGs). Agricultural sustainability issues are widely addressed in scientific literature and various reports by international organizations. However, there are some problems in the existing studies, such as the design of agricultural sustainable development evaluation indicators does not consider the differences in development stages and data statistical capacity of various countries, and the research depth of spatial and temporal change of agricultural sustainable development is insufficient. Agriculture has become a bottleneck for the world and China to achieve the SDGs. Based on the global indicator framework of the Sustainable Development Goals and comprehensive consideration of agricultural development common problems and regional characteristics, this work has established a basic index library consisting of 86 indicators to evaluate the agricultural sustainable development in China and provide the basis for the assessment in different regions. In the indicator optimization process, having considered the development stage of China, the basic characteristics of agriculture, data availability, and reliability, we determined an evaluation index system of China’s agricultural sustainable development that includes 25 specific indicators. The constant elasticity of substitution (CES) model was used to assess the temporal and spatial changes in agricultural sustainability in China at the national, regional, and provincial levels. The results showed that China’s Agricultural Sustainable Development Index (ASDI) score increased from 44.76 in 2011 to 59.22 in 2021, and the ASDI scores of all agricultural regions and provinces also increased to varying degrees. In terms of goal scores, SDG2, SDG6, SDG7, SDG8, SDG9, and SDG12 all exhibited an overall upward trend, in which SDG6 performed the best, and SDG2 performed the worst, scoring 84.76 and 43.05 in 2021, respectively. This paper will provide a basis for systematically evaluating the progress of agricultural sustainable development goals and accurately identifying unsustainable problems in agricultural development to help China implement the 2030 Agenda for Sustainable Development

    Serum uric acid: creatinine ratio (UCR) is associated with recurrence of atrial fibrillation after catheter ablation

    Get PDF
    Background and aimsStudies showed that elevated preoperative serum uric acid(SUA) levels are associated with recurrence of atrial fibrillation(AF) after catheter ablation. UA:creatinine ratio(UCR - UA normalised for renal function) has appeared as a new biomarker and is considered to reflect endogenous UA levels preferably because it eliminates the influence of renal function. This study aimed to investigate the correlation between UCR and recurrence of AF after catheter ablation.Methods and resultsA total of 233 consecutive patients with symptomatic, drug-refractory AF underwent catheter ablation. All participants underwent history-taking, physical examination and blood biochemistry analysis at baseline. After a mean follow-up of 23.99 ± 0.76 months, recurrence ratios for each UCR quartile (from lowest quartile to highest) were 10.9%, 23.6%, 23.6%, and 41.8%, respectively (P = 0.005). Multivariate Cox regression analysis revealed that UCR was an independent predictor of AF recurrence (HR 1.217, 95%CI 1.008-1.468; P = 0.041). Subgroup analysis showed that UCR was associated with AF recurrence in paroxysmal AF (HR 1.426, 95% CI 1.092-1.8608; P = 0.009) and in male patients (HR 1.407, 95% CI 1.015-1.950; P = 0.04). A cut-off point of 4.475 for the UCR had sensitivity of 65.5% and specificity of 59.6% in predicting AF recurrence (P = 0.001).ConclusionOur results demonstrate that elevated preoperative UCR is associated with recurrence of AF after catheter ablation, and it indicate UCR maybe a predictive factor for the recurrence of AF

    Long non-coding RNA DANCR promotes malignant phenotypes of bladder cancer cells by modulating the miR-149/MSI2 axis as a ceRNA

    No full text
    Abstract Background Accumulating evidences have indicated that long non-coding RNAs (lncRNAs) are potential biomarkers that play key roles in tumor development and progression. Differentiation antagonizing non-protein noding RNA (DANCR) is a novel lncRNA that acts as a potential biomarker and is involved in the development of cancers. However, the clinical significance and molecular mechanism of DANCR in bladder cancer is still unknown. Methods The relative expression level of DANCR was determined by Real-Time qPCR in a total of 106 patients with urothelial bladder cancer and in different bladder cancer cell lines. Loss-of-function experiments were performed to investigate the biological roles of DANCR on bladder cancer cell proliferation, migration, invasion and tumorigenicity. Comprehensive transcriptional analysis, RNA-FISH, dual-luciferase reporter assay and western blot were performed to explore the molecular mechanisms underlying the functions of DANCR. Results In this study, we found that DANCR was significantly up-regulated in bladder cancer. Moreover, increased DANCR expression was positively correlated with higher histological grade and advanced TNM stage. Further experiments demonstrated that knockdown of DANCR inhibited malignant phenotypes and epithelial-mesenchymal transition (EMT) of bladder cancer cells. Mechanistically, we found that DANCR was distributed mostly in the cytoplasm and DANCR functioned as a miRNA sponge to positively regulate the expression of musashi RNA binding protein 2 (MSI2) through sponging miR-149 and subsequently promoted malignant phenotypes of bladder cancer cells, thus playing an oncogenic role in bladder cancer pathogenesis. Conclusion This study is the first to demonstrate that DANCR plays a critical regulatory role in bladder cancer cell and DANCR may serve as a potential diagnostic biomarker and therapeutic target of bladder cancer

    Development of an Improved Water Cycle Algorithm for Solving an Energy-Efficient Disassembly-Line Balancing Problem

    No full text
    Nowadays, there is a great deal of interest in the development of practical optimization models and intelligent solution algorithms for solving disassembly-line balancing problems. Based on the importance of energy efficiency of product disassembly and the trend for green remanufacturing, this paper develops a new optimization model for the energy-efficient disassembly-line balancing problem where the goal is to minimize the energy consumption generated during the disassembly-line operations. Since the proposed model is a complex optimization problem known as NP-hard, this study develops an improved metaheuristic algorithm based on the water cycle algorithm as a recently developed successful metaheuristic inspired by the natural water cycle phenomena of diversion, rainfall, confluence, and infiltration operations. A local search operator is added to the main algorithm to improve its performance. The proposed algorithm is validated by the exact solver and compared with other state-of-the-art and recent metaheuristic algorithms. A case study in a turbine reducer with different parameters is solved to show the applicability of this paper. Finally, our results confirm the high performance of the proposed improved water cycle algorithm and the efficiency of our sensitivity analyses during some sensitivity analyses

    Using microRNAs as Novel Predictors of Urologic Cancer Survival: An Integrated AnalysisResearch in Context

    No full text
    Background: MicroRNAs(miRNAs) are involved in the formation, maintenance, and metastasis of urologic cancer. Here, we aim to gather and evaluate all of the evidence regarding the potential role of miRNAs as novel predictors of urologic cancer survival. Methods: A systematic review was performed to identify and score all of the published studies that evaluated the prognostic effects of miRNAs in kidney (KCa), bladder (BCa) or prostate cancer (PCa). Where appropriate, the summary effects of miRNAs on urologic cancer were meta-analysed. The reliability of those results was then further validated by an integrated analysis of the TCGA cohort and miRNA panel. Results: Of 151 datasets, 80 miRNAs were enrolled in this systematic review. A meta-analysis of the prognostic qualities of each miRNA identified an objective association between miRNA and prognosis. miR-21 was identified as an unfavourable miRNA with the overall survival (HR:2.699, 1.76–4.14, P < 0.001) across various prognostic events. Our further meta-analyses, integrating a parallel TCGA analysis, confirmed these partial previous results and further revealed different summary effects, such as the moderate effect of miR-21 in BCa. The refined miRNA panel (KCa-6: miR-27b, −942, −497, −144, −141 and -27a) was more capable of predicting the overall survival than was any single miRNAs included in it (HR: 3.214, 1.971–5.240, P < 0.01). Conclusions: A miRNA panel may be able to determine the prognosis of urologic tumour more effectively and compensate for the unreliability of individual miRNA in estimating prognosis. More large-scale studies are therefore required to evaluate the unbiased prognostic value of miRNAs in urologic cancer effectively. Keywords: miRNAs, Urologic cancer, Prognosis, Biomarker, Bioinformatics analysis, miRNA pane
    corecore