7 research outputs found

    Discovery of Potent and Selective PI3Kδ Inhibitors for the Treatment of Acute Myeloid Leukemia

    No full text
    PI3Kδ is an essential target correlated to the occurrence and development of acute myeloid leukemia (AML). Herein, we investigated the pyrazolo[3,4-d]pyrimidine derivatives as potent and selective PI3Kδ inhibitors with high therapeutic efficacy toward AML. There were 44 compounds designed and prepared in a four-round optimization, and the biological evaluation showed that (S)-36 exhibited potent PI3Kδ inhibitory activity, high selectivity, and high antiproliferative activities against MV-4-11 and MOLM-13 cells, coupled with high oral bioavailability (F = 59.6%). In the MOLM-13 subcutaneous xenograft model, (S)-36 could significantly suppress the tumor progression with a TGI of 67.81% at an oral administration dosage of 10 mg/kg without exhibiting obvious toxicity. Mechanistically, (S)-36 could robustly inhibit the PI3K/AKT pathway for significant suppression of cell proliferation and remarkable induction of apoptosis both in vitro and in vivo. Thus, compound (S)-36 represents a promising PI3Kδ inhibitor for the treatment of acute myeloid leukemia with high efficacy

    Discovery of Potent and Selective PI3Kδ Inhibitors for the Treatment of Acute Myeloid Leukemia

    No full text
    PI3Kδ is an essential target correlated to the occurrence and development of acute myeloid leukemia (AML). Herein, we investigated the pyrazolo[3,4-d]pyrimidine derivatives as potent and selective PI3Kδ inhibitors with high therapeutic efficacy toward AML. There were 44 compounds designed and prepared in a four-round optimization, and the biological evaluation showed that (S)-36 exhibited potent PI3Kδ inhibitory activity, high selectivity, and high antiproliferative activities against MV-4-11 and MOLM-13 cells, coupled with high oral bioavailability (F = 59.6%). In the MOLM-13 subcutaneous xenograft model, (S)-36 could significantly suppress the tumor progression with a TGI of 67.81% at an oral administration dosage of 10 mg/kg without exhibiting obvious toxicity. Mechanistically, (S)-36 could robustly inhibit the PI3K/AKT pathway for significant suppression of cell proliferation and remarkable induction of apoptosis both in vitro and in vivo. Thus, compound (S)-36 represents a promising PI3Kδ inhibitor for the treatment of acute myeloid leukemia with high efficacy

    Discovery of Potent and Selective PI3Kδ Inhibitors for the Treatment of Acute Myeloid Leukemia

    No full text
    PI3Kδ is an essential target correlated to the occurrence and development of acute myeloid leukemia (AML). Herein, we investigated the pyrazolo[3,4-d]pyrimidine derivatives as potent and selective PI3Kδ inhibitors with high therapeutic efficacy toward AML. There were 44 compounds designed and prepared in a four-round optimization, and the biological evaluation showed that (S)-36 exhibited potent PI3Kδ inhibitory activity, high selectivity, and high antiproliferative activities against MV-4-11 and MOLM-13 cells, coupled with high oral bioavailability (F = 59.6%). In the MOLM-13 subcutaneous xenograft model, (S)-36 could significantly suppress the tumor progression with a TGI of 67.81% at an oral administration dosage of 10 mg/kg without exhibiting obvious toxicity. Mechanistically, (S)-36 could robustly inhibit the PI3K/AKT pathway for significant suppression of cell proliferation and remarkable induction of apoptosis both in vitro and in vivo. Thus, compound (S)-36 represents a promising PI3Kδ inhibitor for the treatment of acute myeloid leukemia with high efficacy

    Discovery of Potent and Selective PI3Kδ Inhibitors for the Treatment of Acute Myeloid Leukemia

    No full text
    PI3Kδ is an essential target correlated to the occurrence and development of acute myeloid leukemia (AML). Herein, we investigated the pyrazolo[3,4-d]pyrimidine derivatives as potent and selective PI3Kδ inhibitors with high therapeutic efficacy toward AML. There were 44 compounds designed and prepared in a four-round optimization, and the biological evaluation showed that (S)-36 exhibited potent PI3Kδ inhibitory activity, high selectivity, and high antiproliferative activities against MV-4-11 and MOLM-13 cells, coupled with high oral bioavailability (F = 59.6%). In the MOLM-13 subcutaneous xenograft model, (S)-36 could significantly suppress the tumor progression with a TGI of 67.81% at an oral administration dosage of 10 mg/kg without exhibiting obvious toxicity. Mechanistically, (S)-36 could robustly inhibit the PI3K/AKT pathway for significant suppression of cell proliferation and remarkable induction of apoptosis both in vitro and in vivo. Thus, compound (S)-36 represents a promising PI3Kδ inhibitor for the treatment of acute myeloid leukemia with high efficacy

    Steered molecular dynamics for studying ligand unbinding of ecdysone receptor

    No full text
    <p>Ecdysone receptor (EcR) is an important target for pesticide design. Ligand binding regulates EcR transcriptional activity similar to other nuclear receptors; however, the pathways by which ligands enter and leave the EcR remain poorly understood. Here, we performed computational studies to identify unbinding pathways of an ecdysone agonist [the selective ecdysone agonist, BYI06830] from the EcR ligand binding domain (EcR LBD). BYI06830 can dissociate from EcR LBD via four different pathways with little effect on receptor structure. By comparing the potential of mean force (PMF) of four pathways, path 2 was considered to be the most likely exit path for BYI06830, which was located in the cleft formed by the H3-H4 loop, H6-H7 loop, and the H11 C-terminus. Furthermore, structural features along path 2 were analyzed and the structural snapshots of the metastable and transition states were isolated to illustrate the unbinding mechanism of ecdysone agonist from EcR LBD.</p

    Discovery and Optimization of <i>N</i>‑Acyl-6-sulfonamide-tetrahydroquinoline Derivatives as Novel Non-Steroidal Selective Glucocorticoid Receptor Modulators

    No full text
    Selective glucocorticoid receptor modulators (SGRMs), which can dissociate the transactivation from the transrepression of the glucocorticoid receptor (GR), are regarded as very promising therapeutics for inflammatory and autoimmune diseases. We previously discovered a SGRM HP-19 based on the passive antagonistic conformation of GR and bioassays. In this study, we further analyzed the dynamic changes of the passive antagonistic state upon the binding of HP-19 and designed and synthesized 62 N-acyl-6-sulfonamide-tetrahydroquinoline derivatives by structural optimization of HP-19. Therein, compound B53 exhibits the best transrepression activity (IC50NF‑κB = 0.009 ± 0.001 μM) comparable with dexamethasone (IC50NF‑κB = 0.005 ± 0.001 μM) and no transactivation activity. B53 can efficiently reduce the expression of inflammatory factors IL-6, IL-1β, TNF-α, and so on and makes a milder adverse effect and is highly specific to GR. Furthermore, B53 is able to significantly relieve dermatitis on a mouse model via oral drug intervention

    Discovery and Optimization of <i>N</i>‑Acyl-6-sulfonamide-tetrahydroquinoline Derivatives as Novel Non-Steroidal Selective Glucocorticoid Receptor Modulators

    No full text
    Selective glucocorticoid receptor modulators (SGRMs), which can dissociate the transactivation from the transrepression of the glucocorticoid receptor (GR), are regarded as very promising therapeutics for inflammatory and autoimmune diseases. We previously discovered a SGRM HP-19 based on the passive antagonistic conformation of GR and bioassays. In this study, we further analyzed the dynamic changes of the passive antagonistic state upon the binding of HP-19 and designed and synthesized 62 N-acyl-6-sulfonamide-tetrahydroquinoline derivatives by structural optimization of HP-19. Therein, compound B53 exhibits the best transrepression activity (IC50NF‑κB = 0.009 ± 0.001 μM) comparable with dexamethasone (IC50NF‑κB = 0.005 ± 0.001 μM) and no transactivation activity. B53 can efficiently reduce the expression of inflammatory factors IL-6, IL-1β, TNF-α, and so on and makes a milder adverse effect and is highly specific to GR. Furthermore, B53 is able to significantly relieve dermatitis on a mouse model via oral drug intervention
    corecore