232 research outputs found

    Virus-derived transgenes expressing hairpin RNA give immunity to Tobacco mosaic virus and Cucumber mosaic virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An effective method for obtaining resistant transgenic plants is to induce RNA silencing by expressing virus-derived dsRNA in plants and this method has been successfully implemented for the generation of different plant lines resistant to many plant viruses.</p> <p>Results</p> <p>Inverted repeats of the partial <it>Tobacco mosaic virus </it>(TMV) movement protein (MP) gene and the partial <it>Cucumber mosaic virus </it>(CMV) replication protein (Rep) gene were introduced into the plant expression vector and the recombinant plasmids were transformed into <it>Agrobacterium tumefaciens</it>. <it>Agrobacterium</it>-mediated transformation was carried out and three transgenic tobacco lines (MP16-17-3, MP16-17-29 and MP16-17-58) immune to TMV infection and three transgenic tobacco lines (Rep15-1-1, Rep15-1-7 and Rep15-1-32) immune to CMV infection were obtained. Virus inoculation assays showed that the resistance of these transgenic plants could inherit and keep stable in T<sub>4 </sub>progeny. The low temperature (15℃) did not influence the resistance of transgenic plants. There was no significant correlation between the resistance and the copy number of the transgene. CMV infection could not break the resistance to TMV in the transgenic tobacco plants expressing TMV hairpin MP RNA.</p> <p>Conclusions</p> <p>We have demonstrated that transgenic tobacco plants expressed partial TMV movement gene and partial CMV replicase gene in the form of an intermolecular intron-hairpin RNA exhibited complete resistance to TMV or CMV infection.</p

    Selective delivery of interleukine-1 receptor antagonist to inflamed joint by albumin fusion

    Get PDF
    BACKGROUND: Interleukin-1 receptor antagonist, a cytokine that is highly therapeutic to rheumatoid arthritis and several other inflammatory diseases, exhibits rapid blood clearance and poor retention time on the target in clinical application due to its small size and lack of specificity to target tissue. Albumin has been widely employed as macromolecular carrier for drug delivery purpose to extend the plasma half-life of therapeutic molecules and has been shown to selectively accumulate and to be metabolized in the inflamed joints of patients with rheumatoid arthritis. This suggests that genetic fusion of IL-1ra to albumin can probably overcome the drawbacks of in vivo application of IL-1ra. RESULT: A recombinant protein, engineered by fusing human serum albumin (HSA) to the carboxyl terminal of IL-1ra, was produced in Pichia pastoris and purified to homogeneity. The fusion protein retained the antagonist activity of IL-1ra and had a plasma half-life of approximately 30-fold more than that of IL-1ra in healthy mice. In vivo bio-distribution studies demonstrated that the fusion protein selectively accumulated in arthritic paws for a long period of time in mice with collagen-induced arthritis, showing low uptake rates in normal organs such as liver, kidney, spleen and lung in contrast to IL-1ra alone. Moreover, this fusion protein was able to significantly improve the therapeutic efficacy of IL-1ra in collagen-induced arthritis mouse model. CONCLUSIONS: The fusion protein described here, able to selectively deliver IL-1ra to inflamed tissue, could yield important contributions for the therapy of rheumatoid arthritis and other inflammatory diseases

    Strong Convergence Properties for Asymptotically Almost Negatively Associated Sequence

    Get PDF
    By applying the moment inequality for asymptotically almost negatively associated (in short AANA) random sequence and truncated method, we get the three series theorems for AANA random variables. Moreover, a strong convergence property for the partial sums of AANA random sequence is obtained. In addition, we also study strong convergence property for weighted sums of AANA random sequence

    Reward improves response inhibition by enhancing attentional capture

    Get PDF
    Reward plays a crucial role in enhancing response inhibition. While it is generally assumed that the process of response inhibition involves attentional capture and the stopping of action, it is unclear whether this reflects a direct impact of reward on response inhibition or rather an indirect mediation via attentional capture. Here, we employed a revised stop-signal task (SST) that separated these two cognitive elements, by including a continue signal that required the same motor response as in go trials, but also attention to a cue, as in stop trials. We first confirmed the engagement of the right inferior frontal gyrus (IFG) during stop and continue trials, both of which required the attentional capture of the task-relevant cue, but only one of which required motor inhibition. The pre-supplementary motor area (pre-SMA) was specifically activated by the contrast of the stop trials with the continue trials. The results indicated that the IFG played an important role in attentional capture by unexpected stimuli, while the pre-SMA was responsible for the direct control of motor inhibition. Behavioral performance of the SST was improved by reward, and moreover, reward induced an increase in IFG activity. In addition, this advantageous reward effect was associated with enhanced connectivity between the anterior cingulate cortex and the IFG. These results indicated that the reward facilitation effect on response inhibition was indirect, occurring via a change in attentional processing. The present data confirm the specific function of the IFG and pre-SMA in response inhibition and provide straightforward evidence that reward can increase attentional capture-related activation in the IFG, which in turn improves the performance of response inhibition

    Dexmedetomidine inhibits inflammation in microglia cells under stimulation of LPS and ATP by c-Fos/NLRP3/caspase-1 cascades

    Get PDF
    NOD-like receptor 3 (NLRP3) plays critical roles in the initiation of inflammasome-mediated inflammation in microglia, thus becomes an important therapeutic target of Alzheimer’s disease (AD). Dexmedetomidine (Dex), a new type of clinical anesthetic agent, shows anti-inflammatory properties and inhibits postoperative cognitive dysfunction in AD patients. The present study was aimed to investigate effect of Dex on NLRP3 activity in activated microglia and reveal the underlying mechanisms. The human microglia clone 3 (HMC3) cells were exposed to 100 ng/ml LPS and 5 mM ATP, in the presence and absence of doses of Dex. Data from ELISA and Western blot assays showed that Dex abrogated the promoting effects of LPS/ATP on the release of pro-inflammatory cytokines including IL-1ß and IL-18 in the cell medium and the expression of NLRP3 and its downstream target caspase-1 in HMC3 cells. Furthermore, the present study found that exposure of HMC3 cells to LPS/ATP increased nuclear protein levels of transcription factor c-Fos, but treatment with Dex reversed the increase in c-Fos, as indicated by Western blot and immunofluorescence measures. Luciferase reported assay revealed that c-Fos can bind to the promoter region of NLRP3 gene and positively regulate the expression. These results suggest that Dex inhibiting c-Fos nuclear protein levels promoted by LPS/ATP blocks the up-regulation of NLRP3. This suggestion is supported by co-immunoprecipitation and PCR studies, in which Dex decreased the amount of c-Fos that binds to NLRP3 under the stimulation of LPS/ATP. The present study revealed that Dex inhibits inflammation in microglia cells under stimulation of LPS and ATP by c-Fos/NLRP3/caspase-1 cascades, which adds new understanding of the anti-inflammatory mechanism of Dex

    FT4/FT3 ratio: A novel biomarker predicts coronary microvascular dysfunction (CMD) in euthyroid INOCA patients.

    Get PDF
    Background Ischemia and no obstructive coronary artery disease (INOCA) patients who presented coronary microvascular dysfunction (CMD) demonstrate a poor prognosis, yet the risk factors for CMD remain unclear. Subtle changes in thyroid hormone levels within the normal range, especially the free thyroxine (FT4)/free triiodothyronine (FT3) ratio, have been shown to regulate the cardiovascular system. This prospective study investigated the correlation between FT4/FT3 ratio and CMD in euthyroid patients with INOCA. Methods This prospective study (www.chictr.org.cn/, ChiCTR2000037112) recruited patients with myocardial ischemia symptoms who underwent both coronary angiography (CAG) and myocardial perfusion imaging (MPI) with dynamic single-photon emission computed tomography (D-SPECT). INOCA was defined as coronary stenosis< 50% and CMD was defined as coronary flow reserve (CFR)<2.5. All patients were excluded from abnormal thyroid function and thyroid disease history. Results Among 71 INOCA patients (15 [21.1%] CMD), FT4 and FT4/FT3 ratio in CMD group were significantly higher and both showed significantly moderate correlation with CFR (r=-0.25, p=0.03; r=-0.34, p=0.003, respectively). The ROC curve revealed that FT4/FT3 ratio had the highest efficacy for predicting CMD with an optimized cutoff value>3.39 (AUC 0.78, p<0.001, sensitivity, 80.0%; specificity, 71.4%). Multivariate logistic regression showed that FT4/FT3 ratio was an independent predictor of CMD (OR 7.62, 95% CI 1.12-51.89, p=0.038, P for trend=0.006). Conclusion In euthyroid INOCA patients, increased FT4/FT3 ratio levels are associated with the occurrence of CMD, presenting a novel biomarker for improving the risk stratification

    Extra-Cerebellar Signs and Non-motor Features in Chinese Patients With Spinocerebellar Ataxia Type 3

    Get PDF
    Objectives: Our study attempted to systematically explore the prevalence of extra-cerebellar signs and non-motor symptoms, such as anxiety, depression, fatigue, excessive daytime sleepiness (EDS) and sleep disturbances in a cohort of Chinese patients with spinocerebellar ataxia type 3 (SCA3), and further investigated the correlations between non-motor symptoms and clinical characteristics in SCA3 patients.Methods: This study included 68 molecular-proven SCA3 patients. Extra-cerebellar signs were evaluated with the Inventory of Non-Ataxia Symptoms (INAS). The INAS count indicated the number of non-ataxia signs in each patient. The severity of ataxia, fatigue, EDS, sleep quality, anxiety, and depression were assessed using the Scale for the assessment and rating of ataxia (SARA), Fatigue Severity Scale (FSS), Epworth Sleepiness Scale (ESS), Pittsburgh Sleep Quality Index (PSQI), Hamilton Anxiety Rating Scale (HAMA), and the Hamilton Depression Rating Scale (HAMD) (24 items), respectively.Results: Extra-cerebellar signs were detected in 91.2% of all SCA3 patients and the mean total INAS count was 2.72 ± 1.88. Rigidity was the most frequent extra-cerebellar sign (47.1%, N = 32). Sensory symptoms (2.9%, N = 2) and chorea (5.9%, N = 4) were rare, and myoclonus (0%) was not found in this cohort. High frequencies of sleep disturbances (64.7%), fatigue (52.9%), depression (48.5%), and anxiety (42.6%) were detected in SCA3 patients. The Spearman correlation indicated that the HAMD score was associated with the CAG repeat length and HAMA score, while the PSQI score was correlated with the SARA and FSS score. In addition, multivariate linear regression analysis showed that the CAG repeat length, age of onset, sleep disturbances and depression were significant predictors of fatigue in SCA3 patients.Conclusions: Our study indicates that the vast majority of SCA3 patients display extra-cerebellar signs. Except for EDS, anxiety, depression, fatigue and impaired sleep quality are present in SCA3 patients. The CAG repeat length, age of onset, sleep disturbances and depression are predictors of fatigue in SCA3 patients

    The prognostic value of CZT SPECT myocardial blood flow (MBF) quantification in patients with ischemia and no obstructive coronary artery disease (INOCA): a pilot study.

    Get PDF
    BACKGROUND Despite the demonstrated adverse outcome, it is difficult to early identify the risks for patients with ischemia and no obstructive coronary artery disease (INOCA). We aimed to explore the prognostic potential of CZT SPECT in INOCA patients. METHODS The study population consisted of a retrospective cohort of 118 INOCA patients, all of whom underwent CZT SPECT imaging and invasive coronary angiography (ICA). Dynamic data were reconstructed, and MBF was quantified using net retention model. Major adverse cardiovascular events (MACEs) were defined as cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, heart failure, late coronary revascularization, or hospitalization for unstable angina. RESULTS During a median follow-up of 15 months (interquartile range (IQR) 11-20), 19 (16.1%) MACEs occurred; both stress myocardial blood flow (sMBF) ([Formula: see text]) and coronary flow reserve (CFR) ([Formula: see text]) were significantly lower in the MACE group. Optimal thresholds of sMBF<3.16 and CFR<2.52 were extracted from the ROC curves, and both impaired sMBF (HR: 15.08; 95% CI 2.95-77.07; [Formula: see text]) and CFR (HR: 6.51; 95% CI 1.43-29.65; [Formula: see text]) were identified as prognostic factors for MACEs. Only sMBF<3.16 (HR: 11.20; 95% CI 2.04-61.41; [Formula: see text]) remained a robust predictor when sMBF and CFR were integrated considered. Compared with CFR, sMBF provides better prognostic model discrimination and reclassification ability (C-index improvement = 0.06, [Formula: see text]; net reclassification improvement (NRI) = 0.19; integrated discrimination improvement (IDI) = 0.10). CONCLUSION The preliminary results demonstrated that quantitative analysis on CZT SPECT provides prognostic value for INOCA patients, which may allow the stratification for early prevention and intervention

    The distribution of heterophilic antigens and their relationship with autoimmune diseases

    Get PDF
    IntroductionMicrobial infections are associated with the occurrence of autoimmune diseases, but the mechanisms of microbial infection inducing autoimmune diseases are not fully understood. The existence of heterophilic antigens between microorganisms and human tissues may explain part of the pathogenesis of autoimmune diseases. Here, we investigate the distribution of heterophilic antigens and its relationship with autoimmune diseases.MethodsMonoclonal antibodies against a variety of microorganisms were prepared. The titer, subclass and reactivity of antibodies with microorganisms were identified, and heterophilic antibodies that cross-reacted with human tissues were screened by human tissue microarray. The reactivity of these heterophilic antibodies with different individuals and different species was further examined by immunohistochemistry.ResultsIn this study, 21 strains of heterophilic antibodies were screened. The results showed that these heterophilic antibodies were produced due to the existence of heterophilic antigens between microorganism and human body and the distribution of heterophilic antigens had individual, tissue and species differences.ConclusionOur study showed that heterophilic antigens exist widely between microorganisms and human body, and the heterophilic antigens carried by microorganisms may break the immune tolerance of the body through carrier effect and initiate immune response, which may be one of the important mechanisms of infection inducing autoimmune diseases

    Identification of two rare NPRL3 variants in two Chinese families with familial focal epilepsy with variable foci 3: NGS analysis with literature review

    Get PDF
    Background: The GAP Activity Towards Rags 1 (GATOR1) complex, which includes DEPDC5, NPRL2, and NPRL3, plays a key role in epilepsy. It has been reported that focal epilepsy is associated with mutations in the NPRL3 gene in some cases. We report two rare mutations in the NPRL3 gene in two unrelated Chinese families with focal epilepsy in this study.Methods: The proband and her brother in family E1 first experienced seizures at 1.5 and 6 years of age, respectively. Despite resection of epileptogenic foci, she still suffered recurrent seizures. The first seizure of a 20-year-old male proband in family E2 occurred when he was 2 years old. To identify pathogenic variants in these families, whole-exome sequencing (WES) was performed on genomic DNA from peripheral blood.Results: In family E1, the trio-WES analysis of the proband and her brother without apparent structural brain abnormalities identified a heterozygous variant in the NPRL3 gene (c.954C&gt;A, p.Y318*, NM_001077350.3). In family E2, the proband carried a heterozygous NPRL3 mutation (c.1545-1G&gt;C, NM_001077350.3). Surprisingly, the mothers of the two probands each carried the variants, but neither had an attack. Bioinformatics analysis predicted that the mutation (c.954C&gt;A) was in the highly conserved amino acid residues of NPRL3, which affected the α-helix of NPRL3 protein, leading to a truncated protein. The splice variant (c.1545-1G&gt;C) resulted in the loss of the last exon of the NPRL3 gene.Conclusion: The results of this study provide a foundation for diagnosing NPRL3-related epilepsy by enriching their genotypes and phenotypes and help us identify the genetic etiologies of epilepsy in these two families
    corecore