17 research outputs found

    Reconstruction of metabolic module with improved promoter strength increases the productivity of 2-phenylethanol in Saccharomyces cerevisiae

    No full text
    Abstract Background 2-phenylethanol (2-PE) is an important aromatic compound with a lovely rose-like scent. Saccharomyces cerevisiae is a desirable microbe for 2-PE production but its natural yield is not high, and one or two crucial genes’ over-expression in S. cerevisiae did not improve 2-PE greatly. Results A new metabolic module was established here, in which, permease Gap1p for l-phenylalanine transportation, catalytic enzymes Aro8p, Aro10p and Adh2p in Ehrlich pathway respectively responsible for transamination, decarboxylation and reduction were assembled, besides, glutamate dehydrogenase Gdh2p was harbored for re-supplying another substrate 2-oxoglutarate, relieving product glutamate repression and regenerating cofactor NADH. Due to different promoter strengths, GAP1, ARO8, ARO9, ARO10, ADH2 and GDH2 in the new modularized YS58(G1-A8-A10-A2)-GDH strain enhanced 11.6-, 15.4-, 3.6-, 17.7-, 12.4- and 7.5-folds respectively, and crucial enzyme activities of aromatic aminotransferases and phenylpyruvate decarboxylase were 4.8- and 7-folds respectively higher than that of the control. Conclusions Under the optimum medium and cell density, YS58(G1-A8-A10-A2)-GDH presented efficient 2-PE synthesis ability with ~ 6.3 g L−1 of 2-PE titer in 5-L fermenter reaching 95% of conversation ratio. Under fed-batch fermentation, 2-PE productivity at 24 h increased 29% than that of single-batch fermentation. Metabolic modularization with promoter strategy provides a new prospective for efficient 2-PE production

    Speciation of chromium in chromium yeast

    No full text
    High-performance liquid chromatography was used to separate Cr(III) and Cr(VI) in samples with detection by inductively coupled plasma mass spectrometry(ICP-MS). The separation was achieved on a weak anion exchange column. The mobile phase was pH 7.0 ammonium nitrate solution. The redox reaction between Cr(III) and Cr(VI) was avoided during separation and determination. This separation method could be used to separate the samples with large concentration differences between Cr(III) and Cr(VI). The alkaline digestion was used to extract chromium in solid sample, which had no effect on the retention time and the peak area of the Cr(VI). However, the conversion of Cr(VI) from Cr(III) was observed during alkaline digestion, which displayed positive relation with the ratio of Cr(III) and Cr(VI) in samples. Both Cr(III) and Cr(VI) contents of chromium yeasts cultured in media with different chromium additions were determined. The spike recoveries of Cr(VI) for chromium yeasts were in the range of 95-108 %

    Deletion of intragenic tandem repeats in unit C of FLO1 of Saccharomyces cerevisiae increases the conformational stability of flocculin under acidic and alkaline conditions.

    Get PDF
    Flocculation is an attractive property for Saccaromyces cerevisiae, which plays important roles in fermentation industry and environmental remediation. The process of flocculation is mediated by a family of cell surface flocculins. As one member of flocculins, Flo1 is characterized by four families of repeats (designated as repeat units A, B, C and D) in the central domain. It is generally accepted that variation of repeat unit A in length in Flo1 influences the degree of flocculation or specificity for sugar recognization. However, no reports were observed for other repeat units. Here, we compared the flocculation ability and its sensitivity to environmental factors between yeast strain YSF1 carrying the intact FLO1 gene and yeast strains carrying the derived forms of FLO1 with partial or complete deletion of repeats in unit C. No obvious differences in flocculation ability and specificity of carbohydrate recognition were observed among these yeast strains, which indicates the truncated flocculins can stride across the cell wall and cluster the N-terminal domain on the surface of yeast cells as the intact Flo1 thereby improving intercellular binding. However, yeast strains with the truncated flocculins required more mannose to inhibit completely the flocculation, displayed broad tolerance of flocculation to pH fluctuation, and the fewer the repeats in unit C, the stronger adaptability of flocculation to pH change, which was not relevant to the position of deletion. This suggests that more stable active conformation is obtained for flocculin by deletion the repeat unit C in the central domain of Flo1, which was validated further by the higher hydrophobicity on the surface of cells of YSF1c with complete deletion of unit C under neutral and alkaline conditions and the stabilization of GFP conformation by fusion with flocculin with complete deletion of unit C in the central domain

    Enhancing fluxes through the mevalonate pathway in Saccharomyces cerevisiae by engineering the HMGR and β‐alanine metabolism

    No full text
    Summary Mevalonate (MVA) pathway is the core for terpene and sterol biosynthesis, whose metabolic flux influences the synthesis efficiency of such compounds. Saccharomyces cerevisiae is an attractive chassis for the native active MVA pathway. Here, the truncated form of Enterococcus faecalis MvaE with only 3‐Hydroxy‐3‐methylglutaryl coenzyme A reductase (HMGR) activity was found to be the most effective enzyme for MVA pathway flux using squalene as the metabolic marker, resulting in 431‐fold and 9‐fold increases of squalene content in haploid and industrial yeast strains respectively. Furthermore, a positive correlation between MVA metabolic flux and β‐alanine metabolic activity was found based on a metabolomic analysis. An industrial strain SQ3‐4 with high MVA metabolic flux was constructed by combined engineering HMGR activity, NADPH regeneration, cytosolic acetyl‐CoA supply and β‐alanine metabolism. The strain was further evaluated as the chassis for terpenoids production. Strain SQ3‐4‐CPS generated from expressing β‐caryophyllene synthase in SQ3‐4 produced 11.86 ± 0.09 mg l−1 β‐caryophyllene, while strain SQ3‐5 resulted from down‐regulation of ERG1 in SQ3‐4 produced 408.88 ± 0.09 mg l−1 squalene in shake flask cultivations. Strain SQ3‐5 produced 4.94 g l−1 squalene in fed‐batch fermentation in cane molasses medium, indicating the promising potential for cost‐effective production of squalene

    Primers used in this study.

    No full text
    *<p>Restriction sites of <i>Sal</i>I and <i>Hin</i>dIII in primers P1 and P4 are underlined.</p

    Inhibition on flocculation of different yeast strains by sugars.

    No full text
    <p>The concentration of each sugar is 0.5 M. Data are means Âą standard deviations of three independent experiments.</p

    Cell surface hydrophobicity of strains YSF1 and YSF1c at different pH values.

    No full text
    <p>The hydrophobicity of cell surface was determined using the method described in Materials and Methods. Symbols: YSF1 (red square: ▪), YSF1c (black square: ▪). Values are means of three independent experiments, and error bars represent standard deviation (n = 3).</p

    Effect of mannose, Ca<sup>2+</sup> and pH on flocculation of different yeast strains.

    No full text
    <p>Flocculation ability was compared under conditions with different concentrations of mannose (A) and Ca<b><sup>2+</sup></b> (B) at pH 4.5, and different pH values (C). Symbols: YSF1 (red squares: ▪, □), YSF1c1/YSF1c2/YSF1c3 (black circles: •, ○), YSF1c12/YSF1c13/YSF1c23 (black triangles: ▴, △), YSF1c (black squares: ▪, □), open symbols represent the flocculation recovery of strains treated by different pH conditions. Because almost same levels of flocculation were obtained for the three variants YSF1c1, YSF1c2 and YSF1c3 under same conditions, data for one of the three variants were shown as an example. The same treatment was performed for variants YSF1c12, YSF1c13 and YSF1c23. Values are means of three independent experiments, and error bars represent standard deviation (n = 3).</p

    Targeted RNA N6‐Methyladenosine Demethylation Controls Cell Fate Transition in Human Pluripotent Stem Cells

    No full text
    Abstract Deficiency of the N6‐methyladenosine (m6A) methyltransferase complex results in global reduction of m6A abundance and defective cell development in embryonic stem cells (ESCs). However, it's unclear whether regional m6A methylation affects cell fate decisions due to the inability to modulate individual m6A modification in ESCs with precise temporal control. Here, a targeted RNA m6A erasure (TRME) system is developed to achieve site‐specific demethylation of RNAs in human ESCs (hESCs). TRME, in which a stably transfected, doxycycline‐inducible dCas13a is fused to the catalytic domain of ALKBH5, can precisely and reversibly demethylate the targeted m6A site of mRNA and increase mRNA stability with limited off‐target effects. It is further demonstrated that temporal m6A erasure on a single site of SOX2 is sufficient to control the differentiation of hESCs. This study provides a versatile toolbox to reveal the function of individual m6A modification in hESCs, enabling cell fate control studies at the epitranscriptional level
    corecore