3 research outputs found

    Microarray-based analysis of recombinant protein production in E.coli

    Get PDF
    The production of heterologous proteins in E. coli is a powerful tool in the generation of many important biotechnological and medical products. Despite its widespread use as an expression host, however, yields of correctly folded, functional protein are frequently low in E. coli. This is due largely to the formation of insoluble protein aggregates and to premature lysis of the bacterial cells. We, and others, have previously shown that the cell lysis phenomenon associated with recombinant protein production in E. coli is not a direct result of synthesis of heterologous proteins [1], [2]. Instead, protein production triggers a global stress response in the bacterium, but the mechanism by which cell lysis subsequently occurs remains unclear [3]

    Covalent and Oriented Immobilization of scFv Antibody Fragments via an Engineered Glycan Moiety

    No full text
    Antibody-derived fragments have enormous potential application in solid-phase assays such as biomarker detection and protein purification. Controlled orientation of the immobilized antibody molecules is a critical requirement for the sensitivity and efficacy of such assays. We present an approach for covalent, correctly oriented attachment of scFv antibody fragments on solid supports. Glycosylated scFvs were expressed in Escherichia coli and the C-terminal, binding pocket-distal glycan tag was oxidized for covalent attachment to amine-functionalized beads. The glycosylated scFvs could be immobilized at salt concentrations that precluded nonspecific adsorption of unglycosylated molecules and the covalently attached antibody fragments exhibited 4-fold higher functional activity than ionically adsorbed scFvs. The glyco-tethered scFvs were stable in NaCl concentrations that removed greater than 90% of adsorbed scFvs and they exhibited improved stability of antigen binding over both adsorbed scFvs and soluble, nonimmobilized scFvs in accelerated degradation tests. The simple expression and immobilization approach reported is likely to find broad application in in vitro antibody tests
    corecore