56 research outputs found

    Distinguishing Properties of Higher Order Derivatives of Boolean Functions

    Get PDF
    Higher order differential cryptanalysis is based on the property of higher order derivatives of Boolean functions that the degree of a Boolean function can be reduced by at least 1 by taking a derivative on the function at any point. We define \emph{fast point} as the point at which the degree can be reduced by at least 2. In this paper, we show that the fast points of a nn-variable Boolean function form a linear subspace and its dimension plus the algebraic degree of the function is at most nn. We also show that non-trivial fast point exists in every nn-variable Boolean function of degree n1n-1, every symmetric Boolean function of degree dd where n≢d(mod2)n \not\equiv d \pmod{2} and every quadratic Boolean function of odd number variables. Moreover we show the property of fast points for nn-variable Boolean functions of degree n2n-2

    Clinical research on RSV prevention in children and pregnant women: progress and perspectives

    Get PDF
    Respiratory syncytial virus (RSV) is a significant causative agent of bronchitis and pneumonia in infants and children. The identification and structural analysis of the surface fusion glycoprotein of RSV represents a pivotal advancement in the development of RSV prevention. This review provides a comprehensive summary of RSV monoclonal antibody (mAb) and vaccine clinical trials registered on ClinicalTrials.gov, emphasizing on the classification, name, target, phase, clinical outcomes, and safety data of RSV vaccination in newborns, infants and children. We also discuss the characteristics of the types of RSV vaccines for maternal immunity and summarize the current clinical research progress of RSV vaccination in pregnant women and their protective efficacy in infants. This review will provide new ideas for the development of RSV prevention for children in the future

    Identification of Potential Biomarkers and Metabolic Profiling of Serum in Ovarian Cancer Patients Using UPLC/Q-TOF MS

    Get PDF
    Background/Aims: Ovarian cancer (OC) is a malignant neoplasm of the female reproductive system with a high mortality rate. Identifying useful biomarkers and clarifying the molecular pathogenesis of OC are critical for early diagnosis and treatment. The aim of the study was to identify candidate biomarkers and explore metabolic changes of OC. Methods: A two-stage design was used in our study, with a discovery cohort of OC cases (n = 30) and controls (n = 30) and an independent cohort of cases (n = 17) and controls (n = 18) for validation. The serum metabolic profiling was investigated by ultra-performance liquid chromatography and quadrupole time-of-fight mass spectrometry with positive electrospray ionization. Results: A total of 18 metabolites closely related to OC were identified in the discovery stage, of which 12 were confirmed in the validation cohort. Metabolic pathways in OC related to these biomarkers included fatty acid β-oxidation, phospholipid metabolism, and bile acid metabolism, which are closely related to the proliferation, invasion, and metastasis of cancer cells. Multiple logistic regression analysis of these metabolites showed that 2-piperidinone and 1-heptadecanoylglycerophosphoethanolamine were potential biomarkers of OC, with high sensitivity (96.7%), specificity (66.7%), and area under the receiver operating characteristic curve value (0.894). Conclusion: These findings provide insight into the pathogenesis pathogenesis of OC and may be useful for clinical diagnosis and treatment

    Influences of Two Land-Surface Schemes on RegCM4 Precipitation Simulations over the Tibetan Plateau

    Get PDF
    The effects of different RegCM4 land-surface schemes on Tibetan Plateau (TP) precipitation simulations were investigated. Two groups of ten-year (1992–2001) simulation experiments (hereafter referred to as BATS and CLM) were performed based on two land-surface schemes (BATS and CLM3.5, resp.) and were compared with observed data using the same domain, initial, and lateral boundary conditions, cumulus convective scheme, and spatial resolution. The results showed that the CLM monthly precipitation more closely matched the observed data compared with BATS. BATS and CLM both overestimated summer precipitation in the northern TP but underestimated summer precipitation in the southern TP. However, CLM, because of its detailed land-surface process descriptions, reduced the overestimated precipitation areas and magnitudes of BATS. Compared to CN05, the regional average summer precipitation in BATS and CLM was overestimated by 34.7% and underestimated by 24.7%, respectively. Higher soil moisture, evapotranspiration, and heating effects in the BATS experiment triggered changes in atmospheric circulation patterns over the TP. Moreover, BATS simulated the lower atmosphere as warmer and more humid and the upper atmosphere (~150 hPa) as colder than the CLM simulations; these characteristics likely increased the instability for moist convection and produced more summer precipitation

    Spatial and Temporal Variations of Terrestrial Evapotranspiration in the Upper Taohe River Basin from 2001 to 2018 Based on MOD16 ET Data

    No full text
    Evapotranspiration (ET) is an essential component of watershed hydrological cycle. Spatial-temporal variations analyses of evapotranspiration and potential evapotranspiration (PET) have remarkable theoretical and practical significances for understanding the interaction between climate changes and hydrological cycle and optimal allocation of water resources under global warming background. The MODIS-estimated ET agreed well with basin evapotranspiration from water balance principle methods in the study. The spatiotemporal variations results based on MOD16 ET data showed the following: (1) multiyear mean ET and PET were 464.2 mm and 1192.2 mm, and annual ET showed an upward trend at a rate of 3.48 mm/a, while PET decreased significantly at a rate of −8.18 mm/a. The annual ET trend showed a complemental relationship with PET; (2) at the seasonal scale, ET was highest in summer and least in winter, while PET was higher in spring and summer. The change of ET and PET in spring and summer had a great contribution to the annual variations; (3) ET and PET in the northern part were significantly stronger than those in the western and southern parts; (4) ET in cropland increased significantly, while PET decreased obviously in grass and forest; (5) changes of ET and PET were closely related to climatic factors. The rise in temperature caused the increase in ET and the decrease of wind speed contributed more to the decrease in PET. The results can provide a scientific basis for water resources planning and management

    The Spatial and Temporal Variation of Temperature in the Qinghai-Xizang (Tibetan) Plateau during 1971–2015

    No full text
    The Tibetan Plateau (TP), which is well known as “The Third Pole”, is of great importance to climate change in East Asia, and even the whole world. In this paper, we selected the monthly temperature (including the monthly mean and the maximum and minimum temperature) during 1971–2015 from 88 meteorological stations on the TP. The data were tested and corrected by using Penalized Maximal F Test (PMFT) based on RHtest. Afterwards, based on the Mann-Kendall test, we analyzed the seasonal and time-interval characteristics on each station in detail. The results show that the TP has experienced significant warming during 1971–2015. When comparing the selected elements, the warming rate of minimum temperature (Tmin) is the largest, the mean temperature (Tmean) comes second, and the maximum temperature (Tmax) is the smallest. The warming trends in four seasons are significant, and the highest warming rate occurs in winter. The warming trend on the TP has a prominent spatial difference, with a large warming rate on the eastern parts and a small one on the central regions. In different seasons, the warming trends on the TP have different characteristics in the time interval. Since 1998, the warming rate in spring increased markedly, spring has displaced winter as the season with the highest warming rate recently

    The Precipitation Variations in the Qinghai-Xizang (Tibetan) Plateau during 1961–2015

    No full text
    The variation of precipitation plays an important role in the eco-hydrological processes and water resources regimes on the Tibetan Plateau (TP). Based on the monthly mean precipitation data of 65 meteorological stations over the TP and surrounding areas from 1961 to 2015, variations, trends and temporal–spatial distribution of precipitation have been studied; furthermore, the possible reasons were also discussed preliminarily. The results show that the annual mean precipitation on the TP was 465.5 mm during 1961–2015. The precipitation in summer (June–August (JJA)) accounted for 60.1% of the whole year’s precipitation, the precipitation in summer half-year (May–October) accounted for 91.0%, while the precipitation in winter half-year (November–April) only accounted for 9.0% of the whole year’s precipitation. During 1961–2015, the annual precipitation trend was 3.8 mm/10a and the seasonal precipitation trends were 3.0 mm/10a, 0.0 mm/10a, −0.1 mm/10a and 0.4 mm/10a in spring, summer, autumn and winter on the TP, respectively. The precipitation has decreased from the southeastern to northwestern TP; the trend of precipitation has decreased with the increase of altitude, but the correlation was not significant. The rising of air temperature and land cover changes may cause the precipitation by changing the hydrological cycle and energy budget. Furthermore, different patterns of atmospheric circulation can also influence precipitation variation in different regions

    Fouling of TiO2 Induced by Natural Organic Matters during Photocatalytic Water Treatment: Mechanisms and Regeneration Strategy

    No full text
    Photocatalysis has been intensively investigated for the removal of pollutants but little attention was paid to the deactivation of photocatalysts during the long-term operation. Herein we used TiO2 as the model photocatalyst to investigate its durability in the presence of humic acid (HA), a ubiquitous constituent of real water. No sign of TiO2 deactivation was observed without HA, whereas significant deactivation occurred with HA. Interestingly, the adsorption of intact HA had only a minor contribution to the deactivation, and the major contributing factor was the adsorption of in-situ oxidized HA, which formed surface complexes with TiO2, blocked the active sites, and decreased the efficiency of photogenerated charge transfer. The regeneration of the deactivated TiO2 was also systematically investigated. The present study provides basic information that is required to understand and hinder the complex fouling phenomenon that can be serious in photocatalytic treatment of water containing natural organic matters.11Nsciescopu

    A Phosphorescence Quenching-Based Intelligent Dissolved Oxygen Sensor on an Optofluidic Platform

    No full text
    Continuous measurement of dissolved oxygen (DO) is essential for water quality monitoring and biomedical applications. Here, a phosphorescence quenching-based intelligent dissolved oxygen sensor on an optofluidic platform for continuous measurement of dissolved oxygen is presented. A high sensitivity dissolved oxygen-sensing membrane was prepared by coating the phosphorescence indicator of platinum(II) meso-tetrakis(pentafluorophenyl)porphyrin (PtTFPP) on the surface of the microfluidic channels composed of polydimethylsiloxane (PDMS) microstructure arrays. Then, oxygen could be determined by its quenching effect on the phosphorescence, according to Stern–Volmer model. The intelligent sensor abandons complicated optical or electrical design and uses a photomultiplier (PMT) counter in cooperation with a mobile phone application program to measure phosphorescence intensity, so as to realize continuous, intelligent and real-time dissolved oxygen analysis. Owing to the combination of the microfluidic-based highly sensitive oxygen sensing membrane with a reliable phosphorescent intensity detection module, the intelligent sensor achieves a low limit of detection (LOD) of 0.01 mg/L, a high sensitivity of 16.9 and a short response time (22 s). Different natural water samples were successfully analyzed using the intelligent sensor, and results demonstrated that the sensor features a high accuracy. The sensor combines the oxygen sensing mechanism with optofluidics and electronics, providing a miniaturized and intelligent detection platform for practical oxygen analysis in different application fields
    corecore