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Abstract
Background/Aims: Ovarian cancer (OC) is a malignant neoplasm of the female reproductive 
system with a high mortality rate. Identifying useful biomarkers and clarifying the molecular 
pathogenesis of OC are critical for early diagnosis and treatment. The aim of the study was to 
identify candidate biomarkers and explore metabolic changes of OC. Methods: A two-stage 
design was used in our study, with a discovery cohort of OC cases (n = 30) and controls (n 
= 30) and an independent cohort of cases (n = 17) and controls (n = 18) for validation. The 
serum metabolic profiling was investigated by ultra-performance liquid chromatography and 
quadrupole time-of-flight mass spectrometry with positive electrospray ionization. Results: 
A total of 18 metabolites closely related to OC were identified in the discovery stage, of 
which 12 were confirmed in the validation cohort. Metabolic pathways in OC related to 
these biomarkers included fatty acid β-oxidation, phospholipid metabolism, and bile acid 
metabolism, which are closely related to the proliferation, invasion, and metastasis of cancer 
cells. Multiple logistic regression analysis of these metabolites showed that 2-piperidinone 
and 1-heptadecanoylglycerophosphoethanolamine were potential biomarkers of OC, with 
high sensitivity (96.7%), specificity (66.7%), and area under the receiver operating characteristic 
curve value (0.894). Conclusion: These findings provide insight into the pathogenesis 
pathogenesis of OC and may be useful for clinical diagnosis and treatment.
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Introduction

Ovarian cancer (OC) is a malignant neoplasm of the female reproductive system, and 
has a high global mortality rate. Worldwide, approximately 204, 000 new instances of OC 
are diagnosed each year, with 125, 000 deaths due to OC recorded annually [1]. Early-stage 
OC is difficult to diagnose due to the scarcity of symptoms, and its etiology is unclear [2]. As 
such, most patients are diagnosed at an advanced stage and have a low 5-year survival rate 
[3]. The assay for cancer antigen (CA)125, which is the U.S. Food and Drug Administration-
approved test for OC detection, has high false-positive and -negative rates. Other approaches 
for detecting OC, for instance, based on carcinoembryonic antigen and human epididymis 
protein 4 expression, have similar problems [4]. It is therefore necessary to identify more 
specific biomarkers and catch molecular pathogenesis in order to facilitate the early 
detection of OC and evaluation of treatment.

Metabolomics is an unbiased analytical method for quantitative and qualitative analyses 
of metabolites in cells, tissue, or biofluids and their changes in response to pathophysiological 
stimuli [5-7]. As products and substrates of metabolism, metabolites play important roles in 
cellular functions including cell proliferation and apoptosis, which are correlated with the 
occurrence and development of cancer [8]. Some metabolomic studies of OC have recently 
been carried out using different techniques. An analysis of serum by liquid chromatography 
followed by mass spectrometry (LC–MS) identified 7-nor-5β-cholestane-3, 7,12, 24, 25 
pentol glucuronide as a potential biomarker for OC that is complementary to CA125 [9]. 
Another study using 1H-nuclear magnetic resonance spectroscopy showed that the levels 
of metabolites such as acetoacetate, acetone, and 3-hydroxybutyrate were elevated in 
OC patients [10]. Esterified fatty acid (EFA) (C16:0), EFA (C18:0), and free fatty acid 
(FFA) (C16:0) are also possible biomarkers that were identified by gas chromatography–
mass spectrometry (GC–MS) analysis, indicating that OC is associated with changes in FA 
metabolism [11]. Ultra-performance liquid chromatography (UPLC) coupled with MS has 
higher resolution, sensitivity, and a better metabolite detection range than other analytical 
techniques and has been widely used to investigate metabolic changes in cancer [12, 13].

In this study, we used UPLC quadrupole time-of-flight (Q-TOF) tandem MS (MS/MS) 
to identify potential serum biomarkers and explore metabolic changes in OC in a cohort of 
patients. The biomarkers were then validated in an independent OC case-control experiment.

Materials and Methods

Study design and biospecimen collection
The two-stage study design included a discovery cohort of OC cases (n = 30) and controls (n = 30), and 

an independent cohort of cases (n = 17) and controls (n = 18) for validation. OC was confirmed according to 
the International Federation of Gynecology and Obstetrics (FIGO) staging system [14], and control subjects 
were healthy, age-matched volunteers. Exclusion criteria were patients with metabolic, kidney, or liver 
disease or any other type of cancer. Serum collection and processing were carried out according to standard 
procedures. All subjects underwent an OC screening test prior to inclusion in the study. Before the screening 
test, venous blood samples were collected after overnight fasting for 12 h and centrifuged at 3000 × g for 
15 min to obtain serum, which was stored at −80°C until analysis. After confirming a diagnosis of OC, the 
serum was assigned to the OC or control group. Written, informed consent was obtained from all study 
subjects and the study protocol was approved by the Ethics Committee of the Harbin Medical University (no. 
2016005) and was in accordance with the principles outlined in the Declaration of Helsinki.
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Chemicals and reagents
Chromatography-grade acetonitrile and methanol were from Honeywell Burdick & Jackson (Muskegon, 

MI, USA). Analytical grade formic acid and leucine enkephalin were purchased from Beijing Reagent Company 
(Beijing, China), and Sigma-Aldrich (St Louis, MO, USA). Deionized water was purified using an ultra-clear 
system (SG Water Conditioning and Regeneration, Barsbüttel, Germany). Standards were obtained from 
commercial sources.

Sample preparation
Samples were prepared as previously described [15, 16]. Before analysis, 350-μl serum samples were 

mixed with 1, 400 μl methanol at 4°C. The mixture was vortexed for 3 min, allowed to stand for 10 min, 
and centrifuged at 14, 000 × g for 10 min. The supernatant was dried with nitrogen and dissolved in 350 
μl acetonitrile/water (4:1, v/v), vortexed for 3 min, allowed to stand for 10 min, then centrifuged at 14, 
000 × g for 10 min. The supernatant was transferred to autosampler vials. To verify the reproducibility 
and reliability of the data, a pooled quality control (QC) sample was prepared by mixing equal volumes of 
serum sample from 10 healthy subjects and 10 OC patients, and injecting the mixture at every 10th sample 
throughout the run. A randomized crossover design was used to avoid order effects in statistical analysis. 
Samples of five healthy subjects and five OC patients in the two analyzed batches were alternately injected.

UPLC-QTOF-MS/MS conditions
UPLC-Q-TOF-MS/MS analysis was performed as previously described [15, 16] with an Acquity UPLC 

system coupled with a Q-TOF-MS/MS system in electrospray ionization (ESI) in positive mode (Waters, 
Milford, MA, USA). A 2-μl sample was injected into a BEH-C18 column (4.6 × 50 mm, 1.7 μm; Waters). The 
mobile phase consisted of solvent A (0.1 % formic acid in water) and solvent B (acetonitrile), and the flow 
rate was 0.3 ml/min. The initial composition of B was 2% and increased to 20% from 0–1.5 min, then from 
20%–70% from 1.5–6 min, 70%–92% from 6–9 min, 92%–98% from 9–15 min, and 98%–98% from 15–
16.5 min, followed by re-equilibration to the initial conditions in 4 min. For MS analysis in positive ESI mode, 
the capillary voltage and sample cone voltage were set at 3000 V and 35 V, respectively. The desolvation 
temperature was 300°C and the gas flow rate was 600 l/h. The source temperature was set at 100°C and the 
cone gas flow was 50 l/h. Centroid data were collected from 80–1000 m/z at an acquisition rate of 0.4 with 
a 0.1-s interscan delay. To ensure accuracy and reproducibility, leucine enkephalin at 200 pg/ml was used as 
the lock-mass for positive ESI mode ([M+H]+ = 556.2771) via a lock spray interface.

Data processing and biomarkers screening
Data were processed as previously described [15, 16]. The UPLC/Q-TOF MS data were converted in 

MarkerLynx Application Manager 4.1 SCN 714 (Waters) for analysis. The mass window was set at 0.02 Da, 
noise elimination level at 10.00, retention time tolerance at 0.01 min, and retention time window at 0.2 min. 
Data were used up to 16.5 min after the start of the column-washing phase. The resultant three-dimensional 
matrix consisting of peak indices (retention time–m/z pairs), sample names (observations), and normalized 
ion intensities for each peak area was exported to EZINFO 2.0 (a component of MarkerLynx) to analyze 
grouping trends and outliers by the score plot and determine variable importance in projection (VIP) values 
by partial least squares discriminant analysis (PLS-DA). A principal components analysis (PCA) was used to 
obtain an overview of data quality assessment. Potential biomarkers were selected according to VIP value (> 
1.5) [17]. The goodness-of-fit was quantified by R²Y, while the predictive ability was determined as Q². Using 
SIMCA-P software (v.11.5; Umetrics AB, Umeå, Sweden), a-cross validation procedure and testing with 800 
random permutations was performed to avoid the over-fitting of supervised PLS-DA models. To validate the 
most significant biomarkers and evaluate classification performance, multiple logistic regression analysis of 
top candidate metabolites was performed by stepwise selection. The predictive ability of potential metabolic 
biomarkers and area under the curve (AUC) were evaluated by receiver operating characteristics (ROC) 
analysis. Sensitivity and specificity were determined according to the maximum value of the Youden index.

The identification of empirical formulae for potential biomarkers was first performed according to 
accurate mass measurement and the relative intensities of isotopic peaks in high-resolution mass spectra. 
The MS/MS fragment ion-analysis procedure was facilitated by chemically intelligent peak-matching 
algorithms using the MassFragment application manager (MassLynx v.4.1, Waters). Briefly, MS/MS spectra 
of metabolites and exact mass were matched with the structural information of metabolites in the Human 
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Metabolite Database (HMDB) based on parameters such as deviation from calculated mass double bond 
equivalent and i-fit value (isotopic pattern of the selected ion). The candidate biomarkers were conformed 
with standard compounds based on retention time and tandem mass spectra. The pathways for biomarkers 
were interpreted using information from HMDB (http://www.hmdb.ca), Kyoto Encyclopedia of Genes and 
Genomes (http://www.genome.jp/kegg/) and references.

Statistical analysis
Statistical analysis was performed using SPSS v.13.01S (SPSS Inc., Chicago, IL, USA). Data are presented 

as the mean ± standard deviation (SD). An independent samples t-test was used to analyze differences 
between groups. P values were two-tailed and a value < 0.05 was considered as significant.

Results

Clinical characteristics of study subjects
In this study, we recruited a discovery cohort of 30 OC patients and 30 healthy controls 

and a validation cohort of 17 OC patients and 18 healthy controls. There were no significant 
differences in age and weight between OC and control groups. OC patients had higher serum 
levels of CA125 than healthy individuals. OC was classified into four stages according to FIGO 
staging system (Table 1).

Data quality assessment of metabolomics platform
An overview of the quality of the analytical run was obtained by PCA of the sample and 

QC injections dataset. The results showed that the QC samples were tightly clustered in the 
score plots (Fig. 1, red crosses). In the discovery samples, the relative (R) SDs of retention 
time and peak intensity ranged from 0.07% to 0.63% and 4.23% to 6.56%, respectively. In 
the validation samples, the RSDs of retention time and peak intensity ranged from 0.03% to 
0.67% and 2.36% to 8.82%, respectively (Table 2). These values were all lower than 10%, 
implying that the results had excellent repeatability.

Table 1. Demographic and clinical characteristics of participants in the discovery and validation studies. 
†These patients were documented with “adenocarcinoma”, without further subtype information.* Compared 
with OC patients, p < 0.05

1 
 

721.18(56.4 – 4315.22) 21.85(10.23 - 47. 64) 662.25(23.47 – 4870.63) 24.2 (13.11 - 59. 37)

Stage

†
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Serum metabolite profiling
Representative single UPLC-Q-TOF/MS base peak intensity chromatograms of an OC 

patient and a healthy control are shown in Fig. 2. A total of 6948 ions (peaks) were assessed 
in the discovery analysis. Both the unsupervised (PCA) and supervised (PLS-DA) methods 
were used to evaluate global metabolic alterations in healthy controls and OC patients, and 
corresponding VIP values were also estimated in the PLS-DA model. The PLS-DA score plots 
revealed that the OC patients and healthy subjects could be separated into distinct clusters 
according to differences in serum metabolite composition, and that the parameters of the 
PLS-DA model—including the values of R2Y and Q2 (0.996 and 0.988, respectively, in positive 

Fig. 1. PCA scores plot of ovarian cancer, control and quality control (QC) samples in the discovery and 
validation stages. t[1] = component 1; t[2] = component 2.

1 
 

Fig. 1
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ESI mode) were all > 0.5 (Fig. 3A), implying that the model was a good fit. In addition, the 
permutation test of the established PLS-DA model showed that all permuted R2 and Q2 values 
were lower than the original points to the right and that the Q2 regression line had a negative 
intercept (Fig. 3B), indicating the feasibility of the PLS-DA model.

Identification of differential metabolites
The VIP values (VIP > 1.5) obtained from the 

established PLS-DA model and P values (P < 0.05) obtained 
from the t-test of metabolites in the two groups were used 
as a basis for screening candidate metabolites. A total of 
18 metabolites were identified including 2-piperidinone, 
eicosadienoic acid, 7-ketodeoxycholic acid, varanic 
acid, 1-heptadecanoylglycerophosphoethanolamine, 
lysophosphatidylcholine (lysoPC) (P-16:0), lysoPC (15:0), 
lysophosphatidylethanolamine (lysoPE) (0:0/20:0), 
2-hexaprenyl-3-methyl-6-methoxy-1, 4-benzoquinone, 
lysoPC (22:6), diacylglycerol (DG) (14:0/20:0/0:0), 
PE (18:4/P-16:0), dimethylphosphatidylethanolamine 
(PE-NMe2) (18:1/18:1), PC (14:0/22:4), PC 
(14:1/22:2), 3-O-sulfogalactosylceramide (d18:1/18:1), 
galabiosylceramide (d18:1/18:1), and lactosylceramide 
(d18:1/22:0) (Table 3). More detailed information on 
each metabolite is provided in Table 4. Five of the 18 
metabolites including PC (14:1/22:2), eicosadienoic acid, 
varanic acid, lysoPC (15:0), and lysoPE (0:0/20:0) were 

Table 2. Repeatability of experimental 
method in discovery and validation 
studies. RT = retention time; RSD = 
relative standard deviation

2 
 

 

Fig. 2. Typical serum intensity (BPI) chromatograms in ovarian cancer and control groups. (A) ovarian 
cancer versus (B) control sample. The Y axis and X axis shows the relative abundance (%) and the retention 
time in minutes, respectively. Blue box marked the differences between the two chromatograms.

2 
 

Fig. 2
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Fig. 3. A: 3-dimensional score plot with PLS-DA in patients with ovarian cancer and healthy controls. R2Y = 
0.996, Q2 = 0.988. Controls are indicated in red, and patients with ovarian cancer in blue. t[1] = first principal 
component; t[2] = second principal component; B: The result of permutation test on the PLS-DA model 
in positive ESI mode. The Y axis shows R2Y and Q2, and the X axis shows the correlation of observed and 
permuted data. The R2Y and Q2 value represent the goodness of fit and the predictability of the model. All 
R2Y and Q2 values on the permuted data set to the left were lower than original points to the right, and the 
regression line of Q2 has a negative value of intercept on the Y axis. The results showed that the model was 
valid.

3 
 

Fig. 3

Table 3. Metabolites identified as differentially expressed in the positive ESI mode in the discovery cohort. 
RT = retention time; VIP = variable importance in the projection. * Molecular weight of metabolites from 
UPLC-MS/MS. † Calculated using the molecular weight calculator in Mass Lynx version 4.1. ‡ (Calculated 
mass – measured mass) ÷ measured mass × 1 000 000. § Ratio of mean relative amount between the ovarian 
cancer and control groups

3 
 

mass, Da† ppm‡
0.49 
1.46 
1.37 
1.80 
2.67 
0.72 
0.72 
0.69 
0.50 
0.18 
1.76 
1.54 
1.43 
0.79 
2.02 
0.27 
2.11 
1.82 
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identified using standard compounds. Chemical structures and mass fragment information 
on the principal metabolites are shown in Fig. 4. Other metabolites were confirmed by MS/
MS fragment ion-analysis and using a library database, since no authentic standards were 
commercially available (Fig. 5 and 6).

Validation study of top metabolites
An independent case-control experiment was performed to validate the 18 metabolites 

obtained in the discovery analysis. As in the latter, the experiment showed good reproducibility 
(Table 2). Differences in the abundance of the 18 metabolites between OC patients and controls 
in the validation group were evaluated (Table 4); the results showed that 12 of the metabolites 
differed significantly, including 2-piperidinone, eicosadienoic acid, 7-ketodeoxycholic 
acid, varanic acid, 1-heptadecanoylglycerophosphoethanolamine, 2-hexaprenyl-3-methyl-
6-methoxy-1, 4benzoquinone, lysoPC (15:0), lysoPE (0:0/20:0), DG (14:0/20:0/0:0), PC 
(14:1/22:2), galabiosylceramide (d18:1/18:1), and lactosylceramide (d18:1/22:0). Six 
metabolites were not validated. The AUC for the 12 metabolites showed good predictability 

Table 4. Relative contents of 18 differential metabolites between patients with ovarian cancer and healthy 
controls in discovery and validation cohort.

4 
 

Metabolites

93.40 14.98 234.53 93.72 171.41 20.19 296.29 185.93 < 0.001 69.13 30.52 155.36 58.92 174.07 62.36 313.52 183.52 < 0.001
364.13 123.45 578.36 374.44 249.57 108.40 411.76 247.68 < 0.001 336.43 115.65 596.66 352.33 189.24 51.65 337.56 202.09 < 0.001
78.37 19.37 167.97 67.99 57.24 11.51 142.04 45.73 0.028 73.32 21.33 152.36 68.16 43.99 8.41 97.52 39.55 0.007
45.69 2.74 141.08 36.62 25.41 9.29 76.15 21.87 0.005 43.57 1.86 101.52 37.85 19.51 3.52 53.59 17.09 0.009
48.72 14.34 119.42 45.74 18.22 2.81 37.61 13.50 < 0.001 42.12 12.52 71.52 49.39 13.64 3.75 35.36 12.32 < 0.001
93.47 42.43 148.94 90.41 130.09 54.02 213.12 124.71 < 0.001 125.75 59.36 235.31 119.34 130.15 81.32 168.65 125.36 0.739
52.24 11.41 103.68 50.20 72.87 12.78 113.63 79.83 0.001 51.51 20.42 90.02 55.55 81.52 52.22 131.25 80.52 < 0.001

138.41 52.74 275.71 135.55 199.30 62.38 337.48 207.61 < 0.001 155.21 69.70 290.24 142.21 215.27 102.32 356.22 220.12 0.014
44.69 10.24 142.08 43.78 90.06 1.78 264.14 64.96 < 0.001 38.18 11.25 86.58 41.54 66.00 23.36 132.35 61.55 0.008
44.34 2.57 198.14 37.92 244.06 146.76 467.01 235.20 < 0.001 223.92 135.32 321.25 233.35 263.91 149.10 477.76 248.37 0.148
52.54 1.82 117.09 47.87 29.88 12.34 70.59 24.71 < 0.001 56.07 1.03 147.14 44.52 26.16 5.46 57.13 25.38 0.025

112.02 17.63 207.99 109.35 72.96 31.42 125.73 70.77 < 0.001 102.85 11.37 201.25 108.34 78.57 28.36 199.65 66.35 0.226
201.30 59.84 449.47 193.55 140.54 29.89 283.25 122.18 0.003 226.23 54.56 456.68 239.95 187.57 118.99 379.65 145.65 0.246
492.01 258.56 965.00 480.19 620.65 349.33 1073.01 629.36 0.007 546.30 333.34 967.59 539.42 629.78 321.25 998.97 647.54 0.220
189.24 28.86 372.86 176.47 93.76 18.43 213.45 85.09 < 0.001 174.39 25.37 356.21 163.37 105.68 12.36 230.66 125.49 0.025
91.25 29.28 162.29 93.55 338.02 141.85 553.16 347.36 < 0.001 94.54 25.64 171.15 100.12 88.77 36.32 158.59 88.52 0.652

179.62 22.21 394.62 153.27 85.00 9.02 179.53 88.27 < 0.001 170.92 19.65 356.46 145.56 67.04 15.33 175.57 54.21 0.001
120.22 8.42 262.98 120.22 65.90 5.43 138.83 62.97 < 0.001 157.29 65.52 293.65 147.55 68.94 2.53 142.53 68.52 < 0.001

Fig. 4. Chemical structure and mass fragment information of 5 principal metabolites. (A) PC(14:1/22:2), 
(B) Eicosadienoic acid, (C) Varanic acid, (D) LysoPC(15:0),  and (E) LysoPE(0:0/20:0).

4 
 

Fig. 4
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Fig. 5. Chemical structure and mass fragment information of 6 principal metabolites. (A) 2-Piperidinone, 
(B) 7-Ketodeoxycholicacid, (C) 1-Heptadecanoylglycerophosphoethanolamine, (D) LysoPC(P-16:0), (E)  
2-Hexaprenyl-3-methyl-6-methoxy-1,4benzoquinone, and (F) LysoPC(22:6).

5 
 

Fig. 5

Fig. 6. Chemical structure and mass fragment information of 7 principal metabolites. (A) 
DG(14:0/20:0/0:0), (B) PE(18:4/P-16:0), (C) PE-NMe2(18:1/18:1),  (D) PC(14:0/22:4), (E) 
3-O-Sulfogalactosylceramide(d18:1/18:1), (F) Galabiosylceramide(d18:1/18:1), and (G) Lactosylceramide 
(d18:1/22:0).

6 
 

Fig. 6
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(AUC > 0.6). In particular, 2-piperidinone and 1-heptadecanoylglycerophosphoethanolamine 
showed excellent predictability of disease status (AUC > 0.75). The sensitivity, specificity, 
and best cutoff according to the maximum value of the Youden index were also determined 
(Table 5).

Multiple logistic regression analysis
To identify the most representative biomarkers for distinguishing OC patients 

from healthy people, a multiple logistic regression model was established by stepwise 
selection. The model was first established with 12 metabolites in the discovery samples 
after controlling for age. Two metabolites, i.e., 2-piperidinone (β = −0.0119, P < 0.05) and 
1-heptadecanoylglycerophosphoethanolamine (β = 0.0955, P < 0.05), were also included in 
the model generated with the independent validation samples (2-piperidinone, β = −0.0352, 
P < 0.05 and 1-heptadecanoylglycerophosphoethanolamine, β = 0.0992, P < 0.05) (Table 6). 
We calculated the sensitivity, specificity, and AUC of the regression model and the results 
showed that the model fit well with the discovery sample (AUC = 0.894; sensitivity = 96.7%; 
specificity = 66.7%) and validation sample (AUC = 0.956; sensitivity = 93.3%; specificity = 
80.0%) (Table 7 and Fig. 7).

Table 5. Receiver operator characteristic curve analysis of 12 metabolites in positive ESI mode in the 
discovery study. AUC = area under the curve, *Sensitivity + specificty – 1

5 
 

0.793 126.17 73 83 0.57
0.768 339.05 63 93 0.57
0.673 49.76 87 57 0.43
0.676 25.80 67 70 0.37
0.856 17.45 97 60 0.57
0.737 60.71 77 70 0.47
0.763 172.80 70 77 0.47
0.746 54.75 70 73 0.43
0.732 31.84 67 70 0.37
0.822 92.13 90 57 0.47
0.802 100.63 83 63 0.47
0.747 74.54 77 67 0.43

Table 6. Multiple logistic regression models for the discovery and validation cohorts. SE = standard error * 
R2 = 0.606 † R2 = 0.799

6 
 

Validation cohort†
χ2 Wald χ2

0.0324 0.0344 0.8857 0.3467 0.0423 0.0759 0.3099 0.5778
-0.0119 0.0058 4.3084 0.0379 -0.0352 0.0176 3.9802 0.0460
0.0955 0.0322 8.7769 0.0031 0.0992 0.0476 4.3358 0.0373

Table 7. ROC analysis in discovery and validation stage using a discovery model with 2 factors. ROC = 
receiver operator characteristic; AUC = area under the curve
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0.284 96.7 66.7 0.633
0.336 93.3 80.0 0.733
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Discussion

In this study, we carried out a metabolomics analysis of serum samples from OC patients 
to identify potential biomarkers and determined that 18 metabolites best characterized 
disease status, of which 12 were validated in an independent case-control study. Multiple 
logistic regression analysis of the 12 metabolites showed that two, 2-piperidinone and 
1-heptadecanoylglycerophosphoethanolamine, were significant predictors of OC.

Metabolic pathway analysis of the 12 identified metabolites showed that they were 
closely associated with OC. The 2-piperidinone is a derivative of piperidine, which is an 
organic compound that affects the activity and expression of cytochrome P450 (CYP)2E1, 
and thus indirectly influences oxidative stress and metabolic activation of low-molecular 
weight toxins [18]. CYP2E1 is associated with the metabolism of a variety of compounds 
including 1, 3-butadiene, nitrosamines, benzene, and other carcinogens, and free radicals 
[19]. CYP2E1 is implicated in human malignancies including gastrointestinal and respiratory 
tumors [20, 21], and CYP2E1 gene polymorphisms are associated with the occurrence of 
breast and cervical cancers in females [22, 23]. Another study showed that 2-piperidone is a 
specific marker of OC [24], which is in accordance with our findings.

Eicosadienoic acid is an omega-6 fatty acid. The n-6 PUFA is a specific substrate for 
5-lipoxygenase (5-LOX) and cyclooxygenase (COX)-2. Studies have shown that n-6 PUFA 
interacts with 5-LOX and COX-2 on the cell membrane to generate arachidonic acid compounds 
such as prostaglandin E2 and 12-hydroxy-carbon tetracon acid, which are known to promote 
cancer. Elevated levels of 5-LOX and COX-2 in breast cancer cells enhance the proliferation, 
invasion, and migration of cancer cells by activating G protein-coupled receptors (GPCRs), 
promoting tumor angiogenesis, and inhibiting apoptosis and the immune system [25]. 
Additionally, n-6 fatty acid-derived metabolites promote angiogenesis, a necessary step for 
tumor growth and metastasis, by inducing the expression of growth factors [26]; n-6 fatty 
acids have also been implicated in the progression of breast [27] and prostate [28] cancers.

The compound 1-heptadecanoylglycerophosphoethanolamine, lysoPC (15:0), LysoPE 
(0:0/20:0), and PC (14:1/22:2) are phosphate esters like lysophosphatidic acid (LPA), a 
natural phospholipid that promotes the invasion, metastasis, and proliferation of cancer 

Fig. 7. ROC analysis in discovery and 
validation stages using a discovery 
model for the combination of two 
biomarkers. Blue line and red line 
were finished in the discovery and 
validation samples, and respectively.
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Fig. 7
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cells. A previous study showed that LPA can induce OC cell proliferation and adhesion 
junction breakdown via activation of Src family kinases [29]. LPA stimulates SKOV3 OC 
cell proliferation and inhibits their apoptosis through activation of mitogen-activated 
protein kinase signaling [30]. Another study demonstrated that LPA induces the migration, 
invasion, and proliferation of OC cells through regulation of vascular endothelial growth 
factor, urokinase plasminogen activator, matrix metalloproteinases, interleukin-8, COX-2, 
interleukin-6, CXC motif chemokine ligand 12/CXC receptor 4, cyclin D1, Hippo-Yap, and 
growth-regulated oncogene α [31].

Lactosylceramide and galabiosylceramide are ceramides, which are potent suppressors 
of neoplasms that promote apoptosis, autophagy, and cell cycle arrest [32]. One study 
reported that ceramide glycosylation affected cancer development and progression by 
regulating gene expression, restoring p53 expression via RNA splicing, and downregulating 
multidrug-resistant 1 via cSrc/β-catenin signaling [33]. It has also been suggested that fatty 
acid chain length, subcellular localization, and/or direct downstream targeting of de novo-
generated ceramides have distinct and opposite effects in tumor promotion/suppression 
[34].

Ketodeoxycholic acid and varanic acid are bile acids whose accumulation in blood and 
tissues is controlled by various mechanisms owning to their toxicity [35, 36]. Bile acids 
such as chenodeoxycholic acid (CDCA) and DCA are cytotoxic to OC cells and induce their 
apoptosis [37]. Most bile acids are cytotoxic to a broad range of tumor cells and are highly 
selective for HepG2 cells, with CDCA exhibiting especially high selectivity for these cells [38]. 
A reduction in CDCA concentrations was found to accelerate human endometrial cancer cell 
growth by inducing an increase in cyclin D1 protein and mRNA expression via activation of 
GPCR-dependent pathways [39]. The close relationship between bile acids and colorectal 
cancer [40] and gastric cancer [41] in females provide support for bile acid levels as a 
predictor of OC.

The 2-hexaprenyl-3-methyl-6-methoxy-1, 4 benzoquinone is a polyprenyl benzoquinone 
that is involved in the ubiquinone (CoQ) biosynthesis pathway. CoQ10 influences the 
expression of genes involved in cell signaling, metabolism, and trafficking, which may in 
turn indirectly promote cancer onset [42]. Epidemiological studies have shown that low 
plasma concentrations of CoQ10 may be caused by an inadequate dietary intake or reduced 
endogenous biosynthesis resulting from increased utilization of reactive oxygen species 
induced by oxidative stress [43]. DG (14:0/20:0/0:0) is a diglyceride or a diacylglycerol 
(DAG) composed of two fatty acid chains covalently bound to a glycerol molecule via ester 
linkages. Diglycerides play an important role in signal transduction and lipid metabolism 
in mammalian cells [44]. Diacylglycerol kinase (DGK) α is one of 10 DGK family members 
that convert diglycerides into phosphatidic acid, which along with DAG is a lipid second 
messenger in the plasma membrane. DGKα inhibition can promote T cell activation and boost 
cancer immunotherapy by preventing angiogenesis and causing damage to cancer cells [45].

Conclusion

In summary, we identified 12 biomarkers that may be associated with abnormal 
fatty acid β-oxidation and phospholipid and bile acid metabolism in OC using a UPLC/Q-
TOF MS-based metabolomics strategy and multivariate data analysis. Two of the identified 
metabolites (2-piperidinone and 1-heptadecanoylglycerophosphoethanolamine) were 
validated in a multiple logistic regression model. These findings provide novel insight into 
the pathogenesis of OC, and may be applicable to its clinical diagnosis and treatment.
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