37 research outputs found

    The cellular source for APOBEC3G's incorporation into HIV-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human APOBEC3G (hA3G) has been identified as a cellular inhibitor of HIV-1 infectivity. Viral incorporation of hA3G is an essential step for its antiviral activity. Although the mechanism underlying hA3G virion encapsidation has been investigated extensively, the cellular source of viral hA3G remains unclear.</p> <p>Results</p> <p>Previous studies have shown that hA3G forms low-molecular-mass (LMM) and high-molecular-mass (HMM) complexes. Our work herein provides evidence that the majority of newly-synthesized hA3G interacts with membrane lipid raft domains to form Lipid raft-associated hA3G (RA hA3G), which serve as the precursor of the mature HMM hA3G complex, while a minority of newly-synthesized hA3G remains in the cytoplasm as a soluble LMM form. The distribution of hA3G among the soluble LMM form, the RA LMM form and the mature forms of HMM is regulated by a mechanism involving the N-terminal part of the linker region and the C-terminus of hA3G. Mutagenesis studies reveal a direct correlation between the ability of hA3G to form the RA LMM complex and its viral incorporation.</p> <p>Conclusions</p> <p>Together these data suggest that the Lipid raft-associated LMM A3G complex functions as the cellular source of viral hA3G.</p

    Synthesis and Structure–Activity Relationship of Palmatine Derivatives as a Novel Class of Antibacterial Agents against Helicobacter pylori

    No full text
    Taking palmatine (PMT) as the lead, 20 new PMT derivatives were synthesized and examined for their antibacterial activities against six tested metronidazole (MTZ)-resistant Helicobacter pylori (H. pylori) strains. The structure&ndash;activity relationship (SAR) indicated that the introduction of a suitable secondary amine substituent at the 9-position might be beneficial for potency. Among them, compound 1c exhibited the most potent activities against MTZ-resistant strains, with minimum inhibitory concentration (MIC) values of 4&ndash;16 &mu;g/mL, better than that of the lead. It also exhibited a good safety profile with a half-lethal dose (LD50) of over 1000 mg/kg. Meanwhile, 1c might exert its antimicrobial activity through targeting H. pylori urease. These results suggested that PMT derivatives might be a new family of anti-H. pylori components

    Development of small molecule inhibitors targeting TGF-β ligand and receptor: Structures, mechanism, preclinical studies and clinical usage

    No full text
    Transforming growth factor-β (TGF-β) is a member of a superfamily of pleiotropic proteins that regulate multiple cellular processes such as growth, development and differentiation. Following binding to type I and II TGF-β serine/threonine kinase receptors, TGF-β activates downstream signaling cascades involving both SMAD-dependent and -independent pathways. Aberrant TGF-β signaling is associated with a variety of diseases, such as fibrosis, cardiovascular disease and cancer. Hence, the TGF-β signaling pathway is recognized as a potential drug target. Various organic molecules have been designed and developed as TGF-β signaling pathway inhibitors and they function by either down-regulating the expression of TGF-β or by inhibiting the kinase activities of the TGF-β receptors. In this review, we discuss the current status of research regarding organic molecules as TGF-β inhibitors, focusing on the biological functions and the binding poses of compounds that are in the market or in the clinical or pre-clinical phases of development. © 2020 Elsevier Masson SA

    Validated LC--MS/MS method for determination of YH-8, a novel PKnB inhibitor, in rat plasma and its application to pharmacokinetic study

    Get PDF
    (E)-Methyl-4-aryl-4-oxabut-2-enoate (YH-8) is a novel PKnB protein kinase inhibitor with good anti-tuberculosis activity. To evaluate its pharmacokinetics in rats, a sensitive and selective high performance liquid chromatography–tandem mass spectrometric (LC--MS/MS) method has been developed and validated for the quantification of YH-8 in rat plasma for the first time. Samples were pre-treated using a liquid--liquid extraction with ethyl acetate and the chromatographic separation was performed on a C18 column by gradient elution with methanol--water as the mobile phase. YH-8 was detected using a tandem mass spectrometer in positive selected reaction monitoring (SRM) mode. Method validation revealed good linearity over the range of 1–500 ng/mL for YH-8 with a lower limit of quantification (LLOQ) of 1 ng/mL. Intra- and inter-day precision of YH-8 assay in rat plasma samples were 2.0%–6.8%, with accuracy of the method being 100.69%–106.18%. Stability test showed that when spiked into rat plasma, YH-8 was stable for 12 h at room temperature, for up to 15 days at −70 °C, and after three freeze-thaw cycles. Extracted samples were found to be stable over 12 h in an auto-sampler. The method was successfully applied to the pharmacokinetic study of YH-8 in rats after oral administration at 100 mg/kg and 200 mg/kg

    Genetic basis of high level aminoglycoside resistance in Acinetobacter baumannii from Beijing, China

    Get PDF
    The objective of this study was to investigate the genetic basis of high level aminoglycoside resistance in Acinetobacter baumannii clinical isolates from Beijing, China. 173 A. baumannii clinical isolates from hospitals in Beijing from 2006 to 2009 were first subjected to high level aminoglycoside resistance (HLAR, MIC to gentamicin and amikacin>512 µg/mL) phenotype selection by broth microdilution method. The strains were then subjected to genetic basis analysis by PCR detection of the aminoglycoside modifying enzyme genes (aac(3)-I, aac(3)-IIc, aac(6′)-Ib, aac(6′)-II, aph(4)-Ia, aph(3′)-I, aph(3′)-IIb, aph(3′)-IIIa, aph(3′)-VIa, aph(2″)-Ib, aph(2″)-Ic, aph(2″)-Id, ant(2″)-Ia, ant(3″)-I and ant(4′)-Ia) and the 16S rRNA methylase genes (armA, rmtB and rmtC). Correlation analysis between the presence of aminoglycoside resistance gene and HLAR phenotype were performed by SPSS. Totally 102 (58.96%) HLAR isolates were selected. The HLAR rates for year 2006, 2007, 2008 and 2009 were 52.63%, 65.22%, 51.11% and 70.83%, respectively. Five modifying enzyme genes (aac(3)-I, detection rate of 65.69%; aac(6′)-Ib, detection rate of 45.10%; aph(3′)-I, detection rate of 47.06%; aph(3′)-IIb, detection rate of 0.98%; ant(3″)-I, detection rate of 95.10%) and one methylase gene (armA, detection rate of 98.04%) were detected in the 102 A. baumannii with aac(3)-I+aac(6′)-Ib+ant(3″)-I+armA (detection rate of 25.49%), aac(3)-I+aph(3′)-I+ant(3″)-I+armA (detection rate of 21.57%) and ant(3″)-I+armA (detection rate of 12.75%) being the most prevalent gene profiles. The values of chi-square tests showed correlation of armA, ant(3″)-I, aac(3)-I, aph(3′)-I and aac(6′)-Ib with HLAR. armA had significant correlation (contingency coefficient 0.685) and good contingency with HLAR (kappa 0.940). The high rates of HLAR may cause a serious problem for combination therapy of aminoglycoside with β-lactams against A. baumannii infections. As armA was reported to be able to cause high level aminoglycoside resistance to most of the clinical important aminoglycosides (gentamicin, amikacin, tobramycin, etc), the function of aminoglycoside modifying enzyme gene(s) in A. baumannii carrying armA deserves further investigation

    Mintaimycins, a Group of Novel Peptide Metabolites from <i>Micromonospora</i> sp. C-3509

    No full text
    A group of peptide metabolites (1–4), designated as mintaimycins, were isolated from Micromonospora sp. C-3509. The planar structures of mintaimycins were determined by combination of mass spectrometry, 1D and 2D NMR spectroscopy, and the stereochemistry of mintaimycins were partially resolved by Marfey’s or Mosher’s method. Mintaimycins featured a central β-methylphenylalanine or phenylalanine linked at its amino group with 5-methyl-2-hexenoic acid, and at its carboxyl group with 5-hydroxy-norleucine or leucine that combined a derivative of hexanoic acid or 4-methylpentanoic acid. Mintaimycin A1 (1), the principal component, was found to exhibit the biological activity of inducing pre-adipocyte differentiation of 3T3-L1 fibroblast cells at 10.0 μmol/L
    corecore