432 research outputs found

    Utility greedy discrete bit loading for interference limited multi-cell OFDM system

    No full text
    In this contribution we present the solution of the utility greedy discrete bit loading for interference limited multicell OFDM networks. Setting the utility as the sum of consumed power proportions, the algorithm follows greedy way to achieve the maximum throughput of the system. Simulation has shown that the proposed algorithm has better performance and lower complexity than the traditional optimal algorithm. The discussion of the results is provided

    Effect of rPMS on N-type calcium channel in rats with neuropathic pain

    Get PDF
    Purpose: To investigate the effect of repetitive peripheral magnetic stimulation (rPMS) on N-type calcium channel of rats with neuropathic pain (NP). Methods: Thirty-two Sprague-Dawley (SD) rats were randomized into control, mock surgical, model, and rPMS groups. For the model and rPMS groups, rat NP models were made based on chronic constriction injury (CCI) model from January 2018 to June 2019; the mock surgical group was treated to expose the sciatic nerve, while the control group received no treatment. Results: Compared to the control group, the model group demonstrated a prominent increase in spontaneous pain-like behaviors, threshold of claw withdrawal in reaction to mechanical stimulation, substance P, glutamic acid, calcitonin gene-related peptide (CGRP), and calcium current, with a decrease in paw withdrawal thermal latency (PwTL) (p < 0.05). In comparison to the model group, alleviated spontaneous pain-like behaviors, reduced threshold of claw withdrawal in reaction to mechanical stimulation, substance P, glutamic acid, CGRP, and calcium current rPMS, with increased PwTL were observed in the rPMS group (p < 0.05). Conclusion: rPMS alleviates NP syndromes and inhibits the activity of N-type calcium channel in rats. This finding provides a theoretical basis and reference for the clinical application of rPMS in the treatment of NP. Keywords: Repetitive peripheral magnetic stimulation (rPMS); Neuropathic pain; N-type calcium channel; Paw withdrawal thermal latenc

    A logistic regression model for microalbuminuria prediction in overweight male population

    Get PDF
    Background: Obesity promotes progression to microalbuminuria and increases the risk of chronic kidney disease. Current protocols of screening microalbuminuria are not recommended for the overweight or obese.

Design and Methods: A cross-sectional study was conducted. The relationship between metabolic risk factors and microalbuminuria was investigated. A regression model based on metabolic risk factors was developed and evaluated for predicting microalbuminuria in the overweight or obese.

Results: The prevalence of MA reached up to 17.6% in Chinese overweight men. Obesity, hypertension, hyperglycemia and hyperuricemia were the important risk factors for microalbuminuria in the overweight. The area under ROC curves of the regression model based on the risk factors was 0.82 in predicting microalbuminuria, meanwhile, a decision threshold of 0.2 was found for predicting microalbuminuria with a sensitivity of 67.4% and specificity of 79.0%, and a global predictive value of 75.7%. A decision threshold of 0.1 was chosen for screening microalbuminuria with a sensitivity of 90.0% and specificity of 56.5%, and a global predictive value of 61.7%.

Conclusions: The prediction model was an effective tool for screening microalbuminuria by using routine data among overweight populations

    Optimal ALOHA-like random access with heterogeneous QoS guarantees for multi-packet reception aided visible light communications

    No full text
    There is a paucity of random access protocols designed for alleviating collisions in visible light communication (VLC) systems where carrier sensing is hard to be achieved due to the directionality of light. To resolve the problem of collisions, we adopt the successive interference cancellation (SIC) algorithm to enable the coordinator to simultaneously communicate with multiple devices, which is referred to as the multi-packet reception (MPR) capability. However, the MPR capability could be fully utilized only when random access algorithms are accordingly designed. Considering the characteristics of the random access VLC system with SIC, we propose a novel effective capacity (EC)-based ALOHA-like random access algorithm for MPR-aided uplink VLC systems having heterogeneous quality-of-service (QoS) guarantees. Firstly, we model the VLC network as a conflict graph and derive the EC for each device. Then, we formulate the VLC QoS-driven random access problem as a saturation throughput maximization problem subject to multiple statistical QoS constraints. Finally, the resultant non-concave optimization problem (OP) is solved by a memetic search algorithm relying on invasive weed optimization and differential evolution (IWO-DE). We demonstrate that our derived EC expression matches the Monte Carlo simulation results accurately, and the performance of our proposed algorithm is competitive

    Accuracy Analysis of Attitude Computation Based on Optimal Coning Algorithm

    Get PDF
    To accurately evaluate the applicability of optimal coning algorithms, the direct influence of their periodic components on attitude accuracy is investigated. The true value of the change of the rotation vector is derived from the classical coning motion for analytic comparison. The analytic results show that the influence of periodic components is mostly dominant in two types of optimal coning algorithms. Considering that the errors of periodic components cannot be simply neglected, these algorithms are categorized with simplified forms. A variety of simulations are done under the classical coning motion. The numerical results are in good agreement with the analytic deductions. Considering their attitude accuracy, optimal coning algorithms of the 4-subinterval and 5-subinterval algorithms optimized with angular increments are not recommended for use for real application.Defence Science Journal, 2012, 62(6), pp.361-368, DOI:http://dx.doi.org/10.14429/dsj.62.143

    Comparison of quality/quantity mNGS and usual mNGS for pathogen detection in suspected pulmonary infections

    Get PDF
    Improved metagenomic next-generation sequencing (mNGS), for example, quality/quantity mNGS (QmNGS), is being used in the diagnosis of pulmonary pathogens. There are differences between QmNGS and the usual mNGS (UmNGS), but reports that compare their detection performances are rare. In this prospective study of patients enrolled between December 2021 and March 2022, the bronchoalveolar lavage fluid of thirty-six patients with suspected pulmonary infection was assessed using UmNGS and QmNGS. The sensitivity of QmNGS was similar to that of UmNGS. The specificity of QmNGS was higher than that of UmNGS; however, the difference was not statistically significant. The positive likelihood ratios (+LR) of QmNGS and UmNGS were 3.956 and 1.394, respectively, and the negative likelihood ratios (-LR) were 0.342 and 0.527, respectively. For the co-detection of pathogens, the depth and coverage of the QmNGS sequencing were lower than those of UmNGS, while for the detection of pathogens isolated from patients with pulmonary infection, the concordance rate was 77.2%. In the eleven patients with nonpulmonary infection, only viruses were detected using QmNGS, while UmNGS detected not only viruses but also bacteria and fungi. This study provides a basis for the selection of mNGS for the diagnosis of suspected pulmonary infection
    corecore