342 research outputs found

    A Research on Dimension Reduction Method of Time Series Based on Trend Division

    Get PDF
    The characteristics of high dimension, complexity and multi granularity of financial time series make it difficult to deal with effectively. In order to solve the problem that the commonly used dimensionality reduction methods cannot reduce the dimensionality of time series with different granularity at the same time, in this paper, a method for dimensionality reduction of time series based on trend division is proposed. This method extracts the extreme value points of time series, identifies the important points in time series quickly and accurately, and compresses them. Experimental results show that, compared with the discrete Fourier transform and wavelet transform, the proposed method can effectively process data of different granularity and different trends on the basis of fully preserving the original information of time series. Moreover, the time complexity is low, the operation is easy, and the proposed method can provide decision support for high-frequency stock trading at the actual level

    Spontaneous pneumomediastinum, pneumothorax and subcutaneous emphysema in COVID-19: case report and literature review

    Get PDF
    Coronavirus Disease 2019 (COVID-19) has rapidly spread worldwide. Numerous studies have shown its typical and atypical CT findings. We report one COVID-19 patient who presented with a transient pneumothorax, spontaneous pneumomediastinum (SP), as well as subcutaneous emphysema during hospitalization. Chest CT andclinical findings were discussed, and a literature review is presented. The probable cause of SP in COVID-19 was alveolar damage. Once pneumothorax and SP were present, the patient should be carefully monitored to prevent respiratory deterioration, especially when lung lesions are severe

    Discrimination of Effects between Directional and Nondirectional Information of Auditory Warning on Driving Behavior

    Get PDF
    This study examines the impacts of directional and nondirectional auditory warning information in a collision warning system (CWS) on driving behavior. The data on driving behavior is collected through experiment, with scenarios containing unexpected hazard events that include different warning content. As drivers approached the collision event, either a CWS auditory warning was given or no warning was given for a reference group. Discriminant analysis was used to investigate the relationship between directional auditory warning information and driving behavior. In the experiment, the CWS warnings significantly reduced brake reaction time and prompted drivers to press the brake pedal more heavily, demonstrating the effectiveness of CWS warnings in alerting drivers to avoid red-light running (RLR) vehicles when approaching a signalized intersection. Providing a clear warning with directional information about an urgent hazard event could give drivers adequate time to prepare for the potential collision. In terms of deceleration, a directional information warning was shown to greatly help drivers react to critical events at signalized intersections with more moderate braking. From these results, requirements can be derived for the design of effective warning strategies for critical intersections

    A Rotation Meanout Network with Invariance for Dermoscopy Image Classification and Retrieval

    Full text link
    The computer-aided diagnosis (CAD) system can provide a reference basis for the clinical diagnosis of skin diseases. Convolutional neural networks (CNNs) can not only extract visual elements such as colors and shapes but also semantic features. As such they have made great improvements in many tasks of dermoscopy images. The imaging of dermoscopy has no principal orientation, indicating that there are a large number of skin lesion rotations in the datasets. However, CNNs lack rotation invariance, which is bound to affect the robustness of CNNs against rotations. To tackle this issue, we propose a rotation meanout (RM) network to extract rotation-invariant features from dermoscopy images. In RM, each set of rotated feature maps corresponds to a set of outputs of the weight-sharing convolutions and they are fused using meanout strategy to obtain the final feature maps. Through theoretical derivation, the proposed RM network is rotation-equivariant and can extract rotation-invariant features when followed by the global average pooling (GAP) operation. The extracted rotation-invariant features can better represent the original data in classification and retrieval tasks for dermoscopy images. The RM is a general operation, which does not change the network structure or increase any parameter, and can be flexibly embedded in any part of CNNs. Extensive experiments are conducted on a dermoscopy image dataset. The results show our method outperforms other anti-rotation methods and achieves great improvements in dermoscopy image classification and retrieval tasks, indicating the potential of rotation invariance in the field of dermoscopy images
    corecore