10,278 research outputs found
Recommended from our members
Analysis of interspecies adherence of oral bacteria using a membrane binding assay coupled with polymerase chain reaction-denaturing gradient gel electrophoresis profiling.
Information on co-adherence of different oral bacterial species is important for understanding interspecies interactions within oral microbial community. Current knowledge on this topic is heavily based on pariwise coaggregation of known, cultivable species. In this study, we employed a membrane binding assay coupled with polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) to systematically analyze the co-adherence profiles of oral bacterial species, and achieved a more profound knowledge beyond pairwise coaggregation. Two oral bacterial species were selected to serve as "bait": Fusobacterium nucleatum (F. nucleatum) whose ability to adhere to a multitude of oral bacterial species has been extensively studied for pairwise interactions and Streptococcus mutans (S. mutans) whose interacting partners are largely unknown. To enable screening of interacting partner species within bacterial mixtures, cells of the "bait" oral bacterium were immobilized on nitrocellulose membranes which were washed and blocked to prevent unspecific binding. The "prey" bacterial mixtures (including known species or natural saliva samples) were added, unbound cells were washed off after the incubation period and the remaining cells were eluted using 0.2 mol x L(-1) glycine. Genomic DNA was extracted, subjected to 16S rRNA PCR amplification and separation of the resulting PCR products by DGGE. Selected bands were recovered from the gel, sequenced and identified via Nucleotide BLAST searches against different databases. While few bacterial species bound to S. mutans, consistent with previous findings F. nucleatum adhered to a variety of bacterial species including uncultivable and uncharacterized ones. This new approach can more effectively analyze the co-adherence profiles of oral bacteria, and could facilitate the systematic study of interbacterial binding of oral microbial species
Recommended from our members
Hierarchical Structure with Highly Ordered Macroporous-Mesoporous Metal-Organic Frameworks as Dual Function for CO2 Fixation.
As a major greenhouse gas, the continuous increase of carbon dioxide (CO2) in the atmosphere has caused serious environmental problems, although CO2 is also an abundant, inexpensive, and nontoxic carbon source. Here, we use metal-organic framework (MOF) with highly ordered hierarchical structure as adsorbent and catalyst for chemical fixation of CO2 at atmospheric pressure, and the CO2 can be converted to the formate in excellent yields. Meanwhile, we have successfully integrated highly ordered macroporous and mesoporous structures into MOFs, and the macro-, meso-, and microporous structures have all been presented in one framework. Based on the unique hierarchical pores, high surface area (592 m2/g), and high CO2 adsorption capacity (49.51 cm3/g), the ordered macroporous-mesoporous MOFs possess high activity for chemical fixation of CO2 (yield of 77%). These results provide a promising route of chemical CO2 fixation through MOF materials
The Nullity of Bicyclic Signed Graphs
Let \Gamma be a signed graph and let A(\Gamma) be the adjacency matrix of
\Gamma. The nullity of \Gamma is the multiplicity of eigenvalue zero in the
spectrum of A(\Gamma). In this paper we characterize the signed graphs of order
n with nullity n-2 or n-3, and introduce a graph transformation which preserves
the nullity. As an application we determine the unbalanced bicyclic signed
graphs of order n with nullity n-3 or n-4, and signed bicyclic signed graphs
(including simple bicyclic graphs) of order n with nullity n-5
Chlorido(pyridine-2-carboximidamide-κ2 N 1,N 2)zinc(II) chloride dihydrate
In the title salt, [ZnCl(C6H7N3)2]Cl·2H2O, the pyridine-2-carboximidamide ligands chelate to the ZnII atom, which is also coordinated by a Cl atom. The ZnII atom shows a trigonal–bipyramidal coordination, with the pyridyl N atoms occupying the axial positions. The cation, anion and water molecules are linked by N—H⋯Cl, N—H⋯O, O—H⋯Cl and O—H⋯O hydrogen bonds into a three-dimensional structure
- …