6,153 research outputs found

    Interpretation of the unprecedentedly long-lived high-energy emission of GRB 130427A

    Full text link
    High energy photons (>100 MeV) are detected by the Fermi/LAT from GRB 130427A up to almost one day after the burst, with an extra hard spectral component being discovered in the high-energy afterglow. We show that this hard spectral component arises from afterglow synchrotron-self Compton emission. This scenario can explain the origin of >10 GeV photons detected up to ~30000s after the burst, which would be difficult to be explained by synchrotron radiation due to the limited maximum synchrotron photon energy. The lower energy multi-wavelength afterglow data can be fitted simultaneously by the afterglow synchrotron emission. The implication of detecting the SSC emission for the circumburst environment is discussed.Comment: 4 pages, 2 figures, ApJL in pres

    Three-body interactions on a triangular lattice

    Full text link
    We analyze the hard-core Bose-Hubbard model with both the three-body and nearest neighbor repulsions on the triangular lattice. The phase diagram is achieved by means of the semi-classical approximation and the quantum Monte Carlo simulation. For a system with only the three-body interactions, both the supersolid phase and one third solid disappear while the two thirds solid stably exists. As the thermal behavior of the bosons with nearest neighbor repulsion, the solid and the superfluid undergo the 3-state Potts and the Kosterlitz-Thouless type phase transitions, respectively. In a system with both the frustrated nearest neighbor two-body and three-body interactions, the supersolid and one third solid revive. By tuning the strength of the three-body interactions, the phase diagram is distorted, because the one-third solid and the supersolid are suppressed.Comment: 6 pages, 11 figure

    Static impurities in a supersolid of interacting hard-core bosons on a triangular lattice

    Full text link
    We study the effect of impurities in a supersolid phase in comparison to the behavior in the solid and superfluid phases. A supersolid phase has been established for interacting hardcore bosons on a triangular lattice which may be realizable by ultracold atomic gases. Static vacancies are considered in this model which always lower the magnitude of the order parameter in the solid or superfluid phases. In the supersolid phase, however, the impurities directly affect both order parameters simultaneously and thereby reveal an interesting interplay between them. In particular the solid order may be enhanced at the cost of a strong reduction of the superfluidity, which shows that the two order parameters cannot be in a simple superposition. We also observe an unusual impurity pinning effect in the solid ordered phase, which results in two distinct states separated by a first-order transition.Comment: 5 pages, 5 figures, final version. More information at http://www.physik.uni-kl.de/eggert/papers/index.htm

    Fourth generation Majorana neutrino, dark matter and Higgs physics

    Full text link
    We consider extensions of the standard model with fourth generation fermions (SM4) in which extra symmetries are introduced such that the transitions between the fourth generation fermions and the ones in the first three generations are forbidden. In these models, the stringent lower bounds on the masses of fourth generation quarks from direct searches are relaxed, and the lightest fourth neutrino is allowed to be stable and light enough to trigger the Higgs boson invisible decay. In addition, the fourth Majorana neutrino can be a subdominant but highly detectable dark matter component. We perform a global analysis of the current LHC data on the Higgs production and decay in this type of SM4. The results show that the mass of the lightest fourth Majorana neutrino is confined in the range ∼41−59\sim 41-59 GeV. Within the allowed parameter space, the predicted effective cross-section for spin-independent DM-nucleus scattering is ∼3×10−48−6×10−46cm2\sim 3\times 10^{-48}-6\times 10^{-46} \text{cm}^{2}, which is close to the current Xenon100 upper limit and is within the reach of the Xenon1T experiment in the near future. The predicted spin-dependent cross sections can also reach ∼8×10−40cm2\sim 8\times 10^{-40}\text{cm}^{2}.Comment: arXiv admin note: substantial text overlap with arXiv:1110.293

    The Age-Redshift Relationship of Old Passive Galaxies

    Full text link
    We use 32 age measurements of passively evolving galaxies as a function of redshift to test and compare the standard model (Λ\LambdaCDM) with the Rh=ctR_{\rm h}=ct Universe. We show that the latter fits the data with a reduced χdof2=0.435\chi^2_{\rm dof}=0.435 for a Hubble constant H0=67.2−4.0+4.5H_{0}= 67.2_{-4.0}^{+4.5} km s−1\rm s^{-1} Mpc−1\rm Mpc^{-1}. By comparison, the optimal flat Λ\LambdaCDM model, with two free parameters (including Ωm=0.12−0.11+0.54\Omega_{\rm m}=0.12_{-0.11}^{+0.54} and H0=94.3−35.8+32.7H_{0}=94.3_{-35.8}^{+32.7} km s−1\rm s^{-1} Mpc−1\rm Mpc^{-1}), fits the age-\emph{z} data with a reduced χdof2=0.428\chi^2_{\rm dof}=0.428. Based solely on their χdof2\chi^2_{\rm dof} values, both models appear to account for the data very well, though the optimized Λ\LambdaCDM parameters are only marginally consistent with those of the concordance model (Ωm=0.27\Omega_{\rm m}=0.27 and H0=70H_{0}= 70 km s−1\rm s^{-1} Mpc−1\rm Mpc^{-1}). Fitting the age-zz data with the latter results in a reduced χdof2=0.523\chi^2_{\rm dof}=0.523. However, because of the different number of free parameters in these models, selection tools, such as the Akaike, Kullback and Bayes Information Criteria, favour Rh=ctR_{\rm h}=ct over Λ\LambdaCDM with a likelihood of ∼66.5%−80.5%\sim 66.5\%-80.5\% versus ∼19.5%−33.5%\sim 19.5\%-33.5\%. These results are suggestive, though not yet compelling, given the current limited galaxy age-zz sample. We carry out Monte Carlo simulations based on these current age measurements to estimate how large the sample would have to be in order to rule out either model at a ∼99.7%\sim 99.7\% confidence level. We find that if the real cosmology is Λ\LambdaCDM, a sample of ∼45\sim 45 galaxy ages would be sufficient to rule out Rh=ctR_{\rm h}=ct at this level of accuracy, while ∼350\sim 350 galaxy ages would be required to rule out Λ\LambdaCDM if the real Universe were instead Rh=ctR_{\rm h}=ct.Comment: 36 pages, 13 figures, 1 table; accepted for publication in The Astronomical Journal. arXiv admin note: text overlap with arXiv:1405.238

    Dual Skipping Networks

    Full text link
    Inspired by the recent neuroscience studies on the left-right asymmetry of the human brain in processing low and high spatial frequency information, this paper introduces a dual skipping network which carries out coarse-to-fine object categorization. Such a network has two branches to simultaneously deal with both coarse and fine-grained classification tasks. Specifically, we propose a layer-skipping mechanism that learns a gating network to predict which layers to skip in the testing stage. This layer-skipping mechanism endows the network with good flexibility and capability in practice. Evaluations are conducted on several widely used coarse-to-fine object categorization benchmarks, and promising results are achieved by our proposed network model.Comment: CVPR 2018 (poster); fix typ

    Machine learning of quantum phase transitions

    Full text link
    Machine learning algorithms provide a new perspective on the study of physical phenomena. In this paper, we explore the nature of quantum phase transitions using multi-color convolutional neural-network (CNN) in combination with quantum Monte Carlo simulations. We propose a method that compresses d+1d+1 dimensional space-time configurations to a manageable size and then use them as the input for a CNN. We test our approach on two models and show that both continuous and discontinuous quantum phase transitions can be well detected and characterized. Moreover we show that intermediate phases, which were not trained, can also be identified using our approach.Comment: 6 pages, 5 figure
    • …
    corecore