411 research outputs found

    Manipulation of electronic and magnetic properties of M2_2C (M=Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains

    Full text link
    Tuning the electronic and magnetic properties of a material through strain engineering is an effective strategy to enhance the performance of electronic and spintronic devices. Recently synthesized two-dimensional transition metal carbides M2_2C (M=Hf, Nb, Sc, Ta, Ti, V, Zr), known as MXenes, has aroused increasingly attentions in nanoelectronic technology due to their unusual properties. In this paper, first-principles calculations based on density functional theory are carried out to investigate the electronic and magnetic properties of M2_2C subjected to biaxial symmetric mechanical strains. At the strain-free state, all these MXenes exhibit no spontaneous magnetism except for Ti2_2C and Zr2_2C which show a magnetic moment of 1.92 and 1.25 μB\mu_B/unit, respectively. As the tensile strain increases, the magnetic moments of MXenes are greatly enhanced and a transition from nonmagnetism to ferromagnetism is observed for those nonmagnetic MXenes at zero strains. The most distinct transition is found in Hf2_2C, in which the magnetic moment is elevated to 1.5 μB\mu_B/unit at a strain of 15%. We further show that the magnetic properties of Hf2_2C are attributed to the band shift mainly composed of Hf(5dd) states. This strain-tunable magnetism can be utilized to design future spintronics based on MXenes

    Gas adsorption on MoS2 monolayer from first-principles calculations

    Full text link
    First-principles calculations within density functional theory (DFT) have been carried out to investigate the adsorption of various gas molecules including CO, CO2, NH3, NO and NO2 on MoS2 monolayer in order to fully exploit the gas sensing capabilities of MoS2. By including van der Waals (vdW) interactions between gas molecules and MoS2, we find that only NO and NO2 can bind strongly to MoS2 sheet with large adsorption energies, which is in line with experimental observations. The charge transfer and the variation of electronic structures are discussed in view of the density of states and molecular orbitals of the gas molecules. Our results thus provide a theoretical basis for the potential applications of MoS2 monolayer in gas sensing and give an explanation for recent experimental findings.Comment: 15 pages, 5 figure
    • …
    corecore