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Abstract: A wideband complexity-enhanced chaos generation scheme is proposed by using 

semiconductor laser subject to delay-interfered self-phase-modulated optical feedback. The 

influences of feedback strength, phase modulation index and interference delay on the effective 

bandwidth and time-delay-signature (TDS) characteristics of the proposed scheme-generated 

chaos are extensively investigated both experimentally and numerically. The results 

demonstrate that with the joint effects of phase modulation-induced spectrum expansion and 

nonlinear filtering of delayed interference, wideband chaos with flat spectrum and excellent 

TDS suppression characteristics can be generated over a wide dynamic operation range. In 

comparisons with the relevant chaos generation schemes under convention optical feedback, 

individual self-phase modulated optical feedback, and delay-interfered optical feedback, the 

proposed scheme can not only significantly enhance the effective bandwidth of chaos, but also 

considerably enhance the complexity of chaos by suppressing the TDS towards a 

distinguishable level close to 0. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

All-optical chaos generation based on external-cavity semiconductor lasers (ECSLs) has drawn 

great attention because of its potential applications in secure optical communications [1-6], true 

random bit generation (RBG) [7-15] and chaotic radar [16, 17]. Since in conventional ECSL-

based chaos generation systems, chaotic intensity oscillation is often dominated by the intrinsic 

relaxation oscillation of the laser, in the radio frequency (RF) spectrum of the chaotic signal, 

the majority of the energy is thus concentrated in the vicinity of the relaxation oscillation 

frequency. As a direct result, the effective bandwidth is typically a few GHz only. This restricts 

the signal transmission capacity of optical chaos-based secure communication systems, the rate 

of RBG and the resolution of radar. On the other hand, since the conventional feedback light is 

a linear replica of the laser output, the external cavity resonation introduces a periodicity in the 

chaos, which results in an obvious time delay signature (TDS) that indicates the feedback delay 

time of the external cavity. The TDS can be easily identified by several methods, such as the 

calculations of autocorrelation function (ACF), digital mutual information (DMI), and 

permutation entropy (PE) [18-21]. The obvious TDS degrades the randomness of RBG, threats 

the privacy of chaos sources in secure communication applications, and degrades the precision 

of chaotic radar. Therefore, it is vital to explore new chaos generation schemes that support 

simultaneous bandwidth enhancement and efficient TDS suppression.  

To achieve the aforementioned objective, several methods have been proposed in recent 

years [22-34]. In terms of optical chaos bandwidth enhancement, use can be made of optical 

injection [22-24], fiber ring resonator with chaos injection [25] and delayed self-interference 

https://doi.org/10.1364/OA_License_v1


[26]. In terms of chaos TDS suppression, use can be made of dual optical feedback [27], grating 

optical feedback [28, 29] and phase-modulated optical feedback [30]. In particular, a few 

demonstrations of simultaneous bandwidth enhancement and TDS suppression have also been 

reported by utilizing optical heterodyning [31], electronic heterodyning [32], optical lens and 

self-phase-modulated feedback with microsphere resonator [33,34].  

From a different perspective, in this work we experimentally and numerically demonstrate 

a scheme enabling the generating of wideband complexity-enhanced chaos, by making use of 

electro-optic phase modulation (PM) and delayed interference in the feedback loop of an ECSL. 

Both of experimental and simulation results indicate that significant bandwidth enhancement 

and efficient TDS suppression are simultaneously achievable in the proposed scheme. 

2. Experimental setup 
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(a) Experimental setup of the proposed chaos generation scheme

(b) Transmission spectrum of MZI in the experiment  

Fig. 1. (a) Experimental setup of the proposed scheme, (b) transmission spectrum of MZI. DFB, 
distributed-feedback laser; PM, electro-optic phase modulator; OC, optical circulator; PC, 

polarization controller; FC, fiber coupler; PD, photodetector; Amp: RF amplifier; DL, optical 

delay line; VOA, variable optical attenuator. 

The experimental setup of the proposed wideband complexity-enhanced chaos generation 

scheme is shown in Fig. 1(a). An external-cavity distributed-feedback (DFB) laser is adopted 

as a chaos source. Different to the conventional optical feedback (COF), the output of the DFB 

laser is firstly modulated by an electro-optic phase modulator (Eospace, PM-DS5-20-PFA-

PFA-LV, 20 GHz bandwidth) after passing through an optical circulator (OC). Then, the phase-

modulated light propagates through a Mach-Zehnder interferometer (MZI) consisting of two 3-

dB fiber couplers (FC1 and FC2) and a fiber delay line (DL), which performs the delayed 

interference. After that, the output of MZI is split by a 20/80 fiber coupler FC3: 20% of the 

tapped light is sent back into the DFB laser, while the remaining 80% is further split equally by 

a 50/50 fiber coupler FC4. A variable optical attenuator (VOA) and a polarization controller 

(PC1) are utilized to adjust the feedback strength and the polarization state of the feedback 

light, respectively. One part of the tapped light of FC4 is converted into an electronic signal via 

a photodetector PD1 (u2t, MRV1332A, 30 GHz bandwidth), the electronic signal is then 

amplified by a RF amplifier (Mini-Circuit, ZVE-3W-183+) and used as the driving signal of the 

phase modulator. The other part of the tapped light of FC4 is detected by a second wideband 

photodetector PD2 (u2t, XPDV2120RA, 50 GHz bandwidth) for signal analyzing in the time 

and frequency domains. In our experimental measurements, the DFB laser operates with a bias 

current of 19mA which, without any feedback, corresponds to an output power about 2.0 mW 

and a relaxation oscillation frequency (fRO) of 6.5 GHz. The half-wave voltage of the PM is 4V 

and the peak amplitude of the chaotic PM driving signal is 4V, which corresponds to a peak 



phase shift of π. The bias current and temperature of the DFB laser are monitored by a current-

temperature controller (Newport, LDC-3900), and the central wavelength of the DFB laser 

output is 1549.5nm. The length difference of the two branches of the MZI is 4cm, which 

corresponds to a delay interference of 0.2ns and has a periodic nonlinear transmission spectrum 

shown in Fig. 1(b). The length of the feedback loop with the shorter branch of the MZI is 28.8 

m, which corresponds to a feedback delay of 144.7 ns (144.9 ns for the longer branch loop). 

The electronic chaotic signal is measured by a digital oscilloscope (LeCroy, SDA 830Zi-A, 30 

GHz bandwidth, 80 GS/s) and its RF spectrum is observed with a RF spectrum analyzer (Rohde 

& Schwarz, FSW43, 43GHz bandwidth). To highlight the advantages of the proposed scheme, 

comparisons are made between the proposed scheme and three other relevant chaos generation 

schemes using ECSLs subject to COF, individual SPMOF (the proposed scheme but without 

MZI), COF+MZI (the proposed scheme but without phase modulation), in our experimental 

and numerical investigations.  

3. Experimental results and discussions 

For the chaos generated in the abovementioned four scenarios, Fig. 2 shows the corresponding 

experimental results in terms of the time series, RF spectra, and ACF traces. Here the feedback 

strength is defined as the power ratio between the feedback light and the laser output, and the 

feedback strength is chosen as -25 dB. To quantify the bandwidth characteristic of chaos, we 

adopt the effective bandwidth that is defined as the span between the direct current (DC) 

components and the frequency where 80% of energy is contained in the RF spectrum [35,36]. 

For the COF and SPMOF cases, the energy in the RF spectra is mainly concentrated near the 

relaxation oscillation frequency, and the corresponding effective bandwidths of the chaos 

generated under these two scenarios are 7.8 GHz and 9.3 GHz, respectively. For the COF+MZI 

case, it is seen that the relaxation oscillation is eliminated because of the nonlinear filtering 

effect of the MZI [26]. However, the energy in the RF spectrum degrades quickly with 

increasing frequency, which results in the effective bandwidth is 8.8 GHz only. While in the 

proposed SPMOF+MZI scheme, due to phase modulation, there exists many newly-generated 

frequency components in the feedback light, which expands the spectrum of the phase chaos 

generated by the ECSL, and then the nonlinear filtering effect of MZI converts the spectrum 

expansion in the phase chaos into intensity [26,33]. Consequently, with the joint effects of the 

SPMOF and the MZI, the RF spectrum of chaos becomes much flatter with respect to the other 

three cases, as such the effective bandwidth is enhanced to 27.9 GHz which is about three times 

those generated in other three cases. 

On the other hand, the TDS characteristics are also shown in the third row of Fig. 2. In the 

COF case, a large peak appearing at the position of the feedback delay as shown in Fig. 2(a3), 

suggesting that the TDS is rather easy to be identified. In the cases of both the SPMOF and the 

COF+MZI, due to the nonlinearity of the PM and the nonlinear filtering effect of the MZI, the 

linearity of the feedback light in these two cases is degraded, and the periodicity in the chaos is 

thus degraded correspondingly. For this reason, the TDS is suppressed to some extent, with 

respect to the COF case. However, the TDS in these two cases is still distinguishable as shown 

in Figs. 2(b3) and 2(c3). While in the proposed SPMOF+MZI case, as shown in Fig. 2(d3), 

with the joint nonlinearity effects of the SPMOF and the MZI, the TDS is completely 

suppressed, no distinguishable peak appears at the position near the feedback delay in the ACF 

trace, this indicates that the complexity of chaos is greatly enhanced in comparison with all 

other three cases [36]. 
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Fig. 2. Experimental time series, RF spectra and ACF traces of chaos generated in the cases of 

COF (first column), SPMOF (second column), COF+MZI (third column) and the proposed 

SPMOF+MZI (fourth column). The feedback strength is fixed to -25dB. 

Figure 3 shows the experimental results in terms of the temporal waveforms, RF spectra, 

and ACF traces of chaos generated in the proposed scheme with different feedback strengths. 

For the weak feedback case with a strength of -30 dB (see Figs. 3(a1)-3(a3)), the RF spectrum 

is flat over the whole frequency range of the spectrum analyzer, and the effective bandwidth is 

29.3 GHz. While in the cases of strong feedback with strengths of -20dB and -15dB, as shown 

in Figs. 3(b2) and 3(c2), there are a few periodic peaks occurring in the RF spectra, this is due 

to that the MZI is a periodic nonlinear filter [37]. Since the energy concentrated in these 

periodic peaks is higher than the flat spectral region, the effective bandwidth is thus degraded 

to some extent. The effective bandwidths for these two cases are 27.5GHz and 25.1GHz, 

respectively. Moreover, it is also worth noting that when the feedback strength is sufficiently 

strong, due to the appearance of the periodic peaks in the RF spectrum of chaos, the TDS in 

ACF trace is distinguishable as shown in Fig. 3(c3). 
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Fig. 3. Experimental time series, RF spectra and ACF traces of chaos generated in the proposed 

scheme with feedback strengths of -30dB, -20dB and -15dB.  



To provide an insight into the dynamic characteristics of the bandwidth and complexity of 

chaos generated in the proposed scheme, Fig. 4 presents the feedback strength-dependent 

behaviors of the effective bandwidth and the TDS value in ACF trace, for the four chaos 

generation cases. Here the TDS value is defined as the maximum value in the vicinity of the 

feedback delay position in the ACF trace. As shown in Fig. 4(a), the effective bandwidths of 

chaos in the cases of the COF, the COF+MZI and the SPMOF show very similar developing 

trends: gradually growing with increasing feedback strength. While in the proposed scheme, 

the effective bandwidth is slightly reduced from 29.3GHz to 24.1GHz, as the feedback strength 

increases from -30dB to -10dB. However, it is seen that the effective bandwidth of chaos in the 

proposed scheme is always wider than those of the other three cases. On the other hand, as 

shown in Fig. 4(b), the developing trends of complexity (TDS value in ACF trace) in the cases 

of the COF, the COF+MZI and the SPMOF are also similar, the TDS values firstly decrease 

with increasing feedback strength, and then gradually increasing with increasing feedback 

strength. While in the proposed SPMOF+MZI scheme, when the feedback strength is smaller 

than -18dB, the TDS value is maintained at a low level close to 0, since the TDS can be 

completely suppressed over this range. When the feedback strength is larger than -18 dB, the 

TDS value gradually increases to a distinguishable level, but it always remains at a much lower 

level than those of other three cases, this indicates that the complexity of chaos in the proposed 

scheme is always enhanced with respect to other three cases. The above results indicate that the 

proposed scheme can significantly enhance both bandwidth and complexity of chaos, with 

respect to other three cases. 
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Fig. 4. Experimental (a) effective bandwidth and (b) TDS values in the ACF traces of chaos 

generated in the cases of COF (square), SPMOF (lower-triangle), COF+MZI (upper-triangle) 

and SPMOF+MZI (circle), as a function of the feedback strength. 

Considering interference delays of 0.1ns, 0.2ns and 1ns, Fig. 5 shows the experimentally 

measured time series, RF spectra and ACF traces of the corresponding chaotic signals generated 

in the proposed scheme. In these three cases considered, similar phenomena are observed, 

wideband chaotic signals with flat RF spectra are always obtainable, the effective bandwidths 

for these three cases are 30GHz, 29.3GHz and 29.6GHz, respectively. Simultaneously, in all of 

these three cases, the TDSs are completely suppressed. The results indicate that the prominent 

bandwidth enhancement and excellent TDS suppression are not affected by the interference 

delay of MZI. This statement is also confirmed in the following numerical investigations. 
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Fig. 5. Experimental time series (first column), RF spectra (second column) and ACF traces 
(third column) of chaos generated by the proposed SPMOF+MZI scheme, with different 

interference delays of (a) 0.1ns, (b) 0.2ns and (c) 1ns. The feedback strength is fixed to -30dB.  

4. Theoretical model and numerical simulations  

In the experiment, due to the limitations of practical dynamic device operation ranges including, 

device bandwidths (e.g. PD, RF analyzer, RF amplifier), resolution of interference delay of 

MZI, and gain of the RF amplifier, etc., it is difficult to explore the properties of the proposed 

scheme over a wide range. To solve such an issue, numerical investigations are performed and 

presented in this section. 

4.1 Theoretical model 

The dynamics of the ECSL in the proposed scheme are described by the modified Lang–

Kobayashi rate equations, by taking into account self-phase modulation and delay-interfered 

optical feedback [21-23,27,38]. The rate equations of the slowly-varying complex electric field 

E and the corresponding carrier number N in the active region of the ECSL are written as: 
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where kf denotes the strength of optical feedback defined as the power ratio between the 

feedback light and the laser output light, τf is the delay of the feedback loop of the short branch 

of the MZI, Δtd is the interference delay of the MZI, q=1.6×10-19 C is the electron charge, α is 

the linewidth-enhancement factor, g is differential gain coefficient, ε is the nonlinear gain 

saturation coefficient, N0 is the transparency carrier number, I is the bias current, ω0 is the 

angular frequency, τp is the photon lifetime, τe is the carrier lifetime, and τin is the round-trip 

time of laser cavity. χ(t) is a white Gaussian noise with zero mean and unity variance, it is used 



to model the spontaneous-emission noise. φ(t) is the phase-shift induced by the SPMOF, which 

is defined in Eq. (3), wherein KPM is the phase modulation index, N(|E(t-Δt)|2) stands for the 

normalized electronic PM driving signal, Δt is the delay of the driving signal, which is induced 

by the photovoltaic conversion and the transmissions of the cable and fiber.  

In our simulations, the rate equations are solved by the fourth-order Runge-Kutta algorithm. 

The operation wavelength is λ=1550 nm, the bias current I is set at I=2Ith, where Ith=14.7mA is 

the threshold current of the laser. The intrinsic parameter values of the ECSL are chosen to be 

their typical values reported in [34,39,40]: α=5, ε=5×10−7, τp=2ps, τe=2ns, g=1.5×10−8ps−1, 

N0=1.5×108, τin=3ps, and β=1.5×10−6ns−1. Unless otherwise stated in the corresponding text, the 

PM index is set at KPM=1.5, the delay of the PM driving signal is set at Δt=5ns. Meanwhile, 

similar to that in the experimental setup, the interference delay Δtd is set at 0.2ns, and the delay 

of the feedback loop of the shorter (longer) branch of the MZI is τf=144.7ns (144.9ns).  

4.2 Numerical results 

Firstly, we discuss the dynamic behaviors of the ECSL in the proposed scheme. For the purpose 

of comparison, Figure 6 shows the bifurcation maps of the ECSLs under the aforementioned 

four chaos generation scenarios. Under the scenario of the COF, as that shown in Fig. 6(a), the 

state of the ECSL changes from stable to quasiperiodic (multiple periodic) at the feedback 

strength of about -41dB, and further develops towards chaotic at the feedback strength of -

34dB. For the case of the SPMOF (Fig. 6(b)), the bifurcation point occurs at -46dB, and then 

the ECSL gradually reaches into chaotic regimes when further increasing feedback strength. 

For the case of the MZI+COF (Fig. 6(c)), the state of the ECSL gets into strong chaotic (the 

amplitude of chaos fluctuates significantly over a wide dynamic range), when the feedback 

strength is larger than -34 dB. Nevertheless, in the proposed scheme (Fig. 6(d)), it is shown that 

the ECSL can easily work in the strong chaotic regimes, even when the feedback strength is as 

small as -50dB, the output of the ECSL is still chaotic. Therefore, wideband and complexity-

enhanced chaotic signals are obtainable in the proposed scheme. 
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Fig. 6. Bifurcation diagrams with peak-to-peak intensity of chaos generated under the scenarios 

of (a) COF, (b) SPMOF, (c) COF+MZI and (d) SPMOF+MZI, as a function of feedback strength.  

Figure 7 shows the numerical results in terms of time series, power spectra and ACF traces 

of the chaos generated in the considered four cases with a feedback strength of -25 dB. Similar 

to the experimental results shown in Fig. 2, the energy in the RF spectra of the chaos generated 

in the cases of the COF and the SPMOF is mainly concentrated near the relaxation oscillation 

frequency, and consequently the effective bandwidths of these two cases are only 9.7 GHz and 

12.9 GHz, respectively. For the COF+MZI case, although the energy concentration in the 

vicinity of the relaxation oscillation frequency is eliminated, the energy distribution quickly 

lowers for high frequency, leading to an effective bandwidth of 11.2 GHz only. Nevertheless, 

in the proposed SPMOF+MZI case, the RF spectrum is much flatter than those in other three 



cases, the energy distribution is almost uniform, and the effective bandwidth is enhanced to 

132.7GHz. Moreover, it is also shown that in the proposed scheme, the TDS is completely 

suppressed and indistinguishable in the ACF trace. The numerical results agree very well with 

the experimental results. From the numerically-simulated results, it can be predicted that the 

proposed scheme can generate wideband flat-spectrum chaos with an effective bandwidth 

beyond 100 GHz and completely-compressed TDS characteristic. 
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Fig. 7. Numerical time series (first row), RF spectra (second row) and ACF traces (third row) of 
chaos generated in the cases of (a) COF, (b) SPMOF, (c) COF+MZI and (d) SPMOF+MZI. The 

feedback strength is fixed to -25dB. 

Figure 8 presents the simulated feedback strength-dependent dynamics behaviors of the 

effective bandwidth and the TDS value in ACF trace for the four chaos generation cases. As 

shown in Fig. 8(a), the effective bandwidth of chaos in the COF, SPMOF and COF+MZI cases 

gradually increases with increasing feedback strength, while in the proposed SPMOF+MZI 

scheme it just slightly decreases. Nevertheless, even in the strong feedback cases, the effective 

bandwidth of chaos in the proposed scheme can be several times larger than those in other three 

cases. On the other hand, Figs. 8(b) shows that the TDS value in the proposed scheme is much 

lower than those associated with other three cases at different feedback strengths, and when the 

feedback strength is weaker than -18 dB, the TDS value is close to 0. Comparisons with the 

results in Fig. 4 indicate that the simulation results are well in line with the experimental results.  
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Fig. 8. Numerical results for (a) effective bandwidth and (b) TDS value in ACF trace of chaos 

generated in the cases of COF (square), SPMOF (bottom-triangle), COF+MZI (upper-triangle) 

and SPMOF+MZI (circle), as a function of the feedback strength. 

To more intuitively analyze the effect of feedback strength on effective bandwidth and TDS 

for the proposed scheme, Fig. 9 shows the RF spectra and the ACF traces of chaos generated 

with three representative feedback strengths. Obviously, when the feedback strength is weak, 

as shown in Fig. 9(a1), the RF spectrum of chaos is flat. While when the feedback is relatively 

strong, as shown in Figs. 9(b1) and 9(c1), periodic peaks appear in the RF spectra of chaos, due 



to the periodic transmissivity of the MZI. Simultaneously, with increasing feedback strength, 

the signature of interference delay gradually appears in the ACF traces (see the insets of Figs. 

9(b2) and 9(c2)), and the TDS value gradually increases to a distinguishable level (see Fig. 

9(c2)). It can be easily seen that the simulation results agree well with the experimental results 

demonstrated in Fig. 3.  
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Fig. 9. Numerical results of RF spectra (first row) and ACF traces (second row) of chaos 

generated in the proposed scheme with feedback strengths of -30 dB (first column), (b) -20 dB 

(second column) and (c) -10 dB (third column). Insets: the details of ACF traces nearby 0 ns lag. 

Furthermore, to extensively investigate the properties of bandwidth enhancement and TDS 

suppression in the proposed scheme, Fig. 10 shows the influences of the PM index and the 

feedback strength on the effective bandwidth and the TDS value in ACF trace. As shown in 

Fig. 10(a), the effective bandwidth developing trends can be classified into two regions with a 

threshold PM index boundary of about 0.75. When the PM index is smaller than 0.75, the 

effective bandwidth of chaos increases with increasing feedback strength, the bandwidth 

enhancement is, however, not significant, as the effective bandwidth is smaller than 40GHz in 

this region. Nevertheless, when the PM index is larger than 0.75, although the effective 

bandwidth slightly decreases with increasing feedback strength, the bandwidth enhancement is, 

however, significant, wideband chaos generation with effective bandwidths beyond 100 GHz 

can be achieved over a wide operation range. On the other hand, the variation of TDS shown 

in Fig. 10(b) indicates that for a fixed feedback strength, the larger the PM index, the smaller 

the TDS value. When the PM index is larger than 1, it is relatively easy to suppress the TDS to 

an indistinguishable level close to 0. The different variation trends of effective bandwidth over 

the abovementioned two regions is due to the strength of the spectrum-expansion effect of the 

SPMOF. When the PM index is small, the spectrum-expansion effect of the SPMOF is not 

significant, the difference between the SPMOF and the COF is thus not obvious. In such a case, 

as shown in Figs. 10(c1)-10(c3), the characteristic of chaos in the proposed scheme is similar 

to that in the case of the COF+MZI, as shown in Figs. 2(c1)-2(c3) and Figs. 7(c1)-7(c3), and 

the effective bandwidth is enhanced by strong feedback strength, since the RF spectrum 

becomes flat. Whilst when the PM index is larger than 0.75, the threshold, the spectrum 

expansion effect of the SPMOF is significant, as shown in Fig. 3 and Fig. 9, as a direct result 

of the coexistence of the joint effects of the SPMOF and the MZI, the RF spectrum of chaos is 

flat, and the effective bandwidth is slightly degraded with increasing feedback strength due to 

the appearance of periodic peaks in the flat RF spectrum. The above discussions indicate that, 

in the proposed scheme, wideband chaos generation with effective bandwidths beyond 100GHz 

and efficiently-suppressed TDS can be achieved by using a properly large PM index. 
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Fig. 10. Influences of PM index and feedback strength on (a) effective bandwidth (GHz) and (b) 

TDS in ACF in the proposed SPMOF+MZI scheme; (c1-c3) RF spectra of chaos generated in 

the proposed scheme with a PM index of 0.5. The interference delay is fixed at Δtd=0.2ns. 

In addition, Fig. 11 shows the influences of the delay time (Δtd) of the MZI and the feedback 

strength on effective bandwidth and TDS suppression. Apparently, no significant impacts of 

interference delay on both of bandwidth enhancement and TDS suppression. For a fixed 

feedback strength, the variations of effective bandwidth and TDS value in ACF are negligible. 

This means that, the selection of the MZI interference delay in the proposed scheme is flexible, 

as long as the delay time lager than the coherent time of the laser. In practice, this condition 

can be easily satisfied by using a sufficiently long delay line in the MZI. 
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Fig. 11. Influences of interference delay of MZI and feedback strength on (a) effective 

bandwidth and (b) TDS in ACF trace in the proposed SPMOF+MZI scheme. 

5. Conclusions 

We proposed and demonstrated a wideband complexity-enhanced chaos generation scheme by 

introducing self-phase modulation and delayed interference with a MZI into the feedback loop 

of an ECSL. To demonstrate the effectiveness of the proposed scheme, the investigations were 

also undertaken of other three relevant chaos generation schemes using ECSLs subject to COF, 

SPMOF and MZI+COF. The experimental and numerical results indicated that wideband chaos 

with flat spectrum and efficiently-suppressed TDS is achievable in the proposed scheme. 

Comparing with other three cases, the proposed scheme can much easily work in the chaotic 

regimes, the effective bandwidth of chaos can be enhanced significantly and the TDS in chaos 

can also be efficiently suppressed to an indistinguishable level over a wide dynamic operation 

range. Moreover, the numerical results indicate that the enhanced effective bandwidth beyond 

100 GHz can be obtainable, and that the interference delay does not considerably affect the 

bandwidth enhancement and TDS suppression properties. The proposed scheme is valuable for 



providing wideband chaos sources for applications in secure optical communications, high-

speed random bit generation and high-resolution chaotic radar. 
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