5 research outputs found

    Two-dimensional superconductivity at heterostructure of Mott insulating titanium sesquioxide and polar semiconductor

    Full text link
    Heterointerfaces with symmetry breaking and strong interfacial coupling could give rise to the enormous exotic quantum phenomena. Here, we report on the experimental observation of intriguing two-dimensional superconductivity with superconducting transition temperature (TcT_c) of 3.8 K at heterostructure of Mott insulator Ti2_2O3_3 and polar semiconductor GaN revealed by the electrical transport and magnetization measurements. Furthermore, at the verge of superconductivity we find a wide range of temperature independent resistance associated with vanishing Hall resistance, demonstrating the emergence of quantum metallic-like state with the Bose-metal scenario of the metallic phase. By tuning the thickness of Ti2_2O3_3 films, the emergence of quantum metallic-like state accompanies with the appearance of superconductivity as decreasing in temperature, implying that the two-dimensional superconductivity is evolved from the quantum metallic-like state driven by the cooperative effects of the electron correlation and the interfacial coupling between Ti2_2O3_3 and polar GaN. These findings provide a new platform for the study of intriguing two-dimensional superconductivity with a delicate interplay of the electron correlation and the interfacial coupling at the heterostructures, and unveil the clues of the mechanism of unconventional superconductivity.Comment: 17 pages, 4 figure

    Quantum metallic state in the titanium sesquioxide heterointerface superconductor

    Full text link
    The emergence of the quantum metallic state marked by a saturating finite electrical resistance in the zero-temperature limit in a variety of two-dimensional superconductors injects a new momentum to the realm of unconventional superconductivity. Despite much research efforts over last few decades, there is not yet a general consensus on the nature of this unexpected quantum metal. Here, we report the unique quantum metallic state within the hallmark of Bose-metal characterized by the saturated resistance and simultaneously vanished Hall resistance in the titanium sesquioxide heterointerface superconductor Ti2_2O3_3/GaN. Strikingly, the quantum bosonic metallic state proximate to the two-dimensional superconductivity-metal transition tuned by magnetic fields persists in the normal phase, suggesting that the existence of composite bosons formed by electron Cooper pairs survives even in the normal phase. Our work marks the observation of the preformed electron Cooper pairs in heterointerface superconductor and sheds new light on understanding the underlying pairing mechanism of unconventional superconductivity.Comment: 6 pages, 4 figure

    Spontaneous rotational symmetry breaking in KTaO3_3 interface superconductors

    Full text link
    Strongly correlated electrons could display intriguing spontaneous broken symmetries in the ground state. Understanding these symmetry breaking states is fundamental to elucidate the various exotic quantum phases in condensed matter physics. Here, we report an experimental observation of spontaneous rotational symmetry breaking of the superconductivity at the interface of YAlO3_3/KTaO3_3 (111) with a superconducting transition temperature of 1.86 K. Both the magnetoresistance and upper critical field in an in-plane field manifest striking twofold symmetric oscillations deep inside the superconducting state, whereas the anisotropy vanishes in the normal state, demonstrating that it is an intrinsic property of the superconducting phase. We attribute this behavior to the mixed-parity superconducting state, which is an admixture of ss-wave and pp-wave pairing components induced by strong spin-orbit coupling. Our work demonstrates an unconventional nature of the pairing interaction in the KTaO3_3 interface superconductor, and provides a new platform to clarify a delicate interplay of electron correlation and spin-orbit coupling.Comment: 7 pages, 4 figure

    Direct observation of hot-electron-enhanced thermoelectric effects in silicon nanodevices

    No full text
    Abstract The study of thermoelectric behaviors in miniatured transistors is of fundamental importance for developing bottom-level thermal management. Recent experimental progress in nanothermetry has enabled studies of the microscopic temperature profiles of nanostructured metals, semiconductors, two-dimensional material, and molecular junctions. However, observations of thermoelectric (such as nonequilibrium Peltier and Thomson) effect in prevailing silicon (Si)—a critical step for on-chip refrigeration using Si itself—have not been addressed so far. Here, we carry out nanothermometric imaging of both electron temperature (T e) and lattice temperature (T L) of a Si nanoconstriction device and find obvious thermoelectric effect in the vicinity of the electron hotspots: When the electrical current passes through the nanoconstriction channel generating electron hotspots (with T e~1500 K being much higher than T L~320 K), prominent thermoelectric effect is directly visualized attributable to the extremely large electron temperature gradient (~1 K/nm). The quantitative measurement shows a distinctive third-power dependence of the observed thermoelectric on the electrical current, which is consistent with the theoretically predicted nonequilibrium thermoelectric effects. Our work suggests that the nonequilibrium hot carriers may be potentially utilized for enhancing the thermoelectric performance and therefore sheds new light on the nanoscale thermal management of post-Moore nanoelectronics
    corecore