835 research outputs found

    ACOUSTIC BESSEL AND VORTEX BEAMS: FORCES AND REFRACTION

    Get PDF
    Non-contact manipulation techniques or tweezers devices are invaluable for applications in physics, chemistry, biology, and engineering. Acoustic tweezers using either standing waves or focused beams have been investigated for more than a few decades with advantages of label-free operation, noninvasiveness, and biocompatibility when compared with the optical, magnetic, and electrical counterparts. Here, a new type of acoustic tweezers (i.e. acoustic tractors) is studied using acoustic Bessel and vortex beams that are able to pull objects against the beam\u27s propagation over centimeter ranges. Stable acoustic tractors require transversely stable trapping in addition to axially negative pulling. Hence, the transverse forces acting on a spherical particle centered on the axis of axisymmetric and vortex Bessel beams were first investigated by using both the Gorkov potential and the partial wave expansion with the trapping behaviors more flexible than trapping by standing waves and focused beams used in conventional acoustic tweezers. Then, the physical parameters desired for simultaneous trapping and pulling of particles of different sizes were examined. The results reveal the possibility of achieving a simultaneous pulling and trapping of a small particle using Bessel beams. In addition, the Born approximation method was used to analyze the transverse trapping force for spherical particles and particles of different shapes and orientations. Compared with the full solution from the partial wave expansion, the Born approximation can simplify the computation and can also provide insight into the transverse radiation force. In addition, a mathematical framework based on phase shifts adapted from quantum scattering theory was used to analyze the axial radiation force. This phase shift approach can allow one to engineer object and beam parameters to design experimentally achievable axially pulling forces. Furthermore, the effects of realistic factors such as gravity, buoyancy, and acoustic streaming were also evaluated. The work here is useful for the further study of acoustic radiation force and will lead to an experimental demonstration of stable acoustic tractor beams. The study will also guide particle manipulations with engineered objects

    Reconfigurable solid-state dye-doped polymer ring resonator lasers

    Get PDF
    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G) and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable and low lasing threshold coherent light sources on a chip

    Biological Lasers for Biomedical Applications

    Full text link
    A biolaser utilizes biological materials as part of its gain medium and/or part of its cavity. It can also be a micro- or nanosized laser embedded/integrated within biological materials. The biolaser employs lasing emission rather than regular fluorescence as the sensing signal and therefore has a number of unique advantages that can be explored for broad applications in biosensing, labeling, tracking, contrast agent development, and bioimaging. This article reports on the progress in biolasers with focus on the work done in the past five years. In the end, the possible future directions of the biolaser are discussed.Biolasers and their applications in biology and biomedicine are reviewed in this progress report. The biolaser employs lasing emission rather than regular fluorescence as the sensing signal and therefore has a number of unique advantages that can be explored for broad applications in biosensing, labeling, tracking, contrast agent development, and bioimaging.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151258/1/adom201900377.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151258/2/adom201900377_am.pd

    The value of additional reviews in reputation systems: Evidence from a car review platform

    Get PDF
    Online reviews, especially additional reviews, have become an important channel for consumers to obtain information about product quality. Based on review data obtained from “AutoHome”, which is a most popular car review platform in China, this study explores the influence of additional review function on the initial reviews from both the reader and reviewer levels. At the reader-level, the introduction of the additional review function improves readers’ perceived usefulness of the reviews. At the reviewer-level, it can drive reviewers to write more initial reviews. In general, the introduction of such a function can be regarded as an improvement of the existing review mechanism. The findings of this study can not only enrich the research on online word-of-mouth, but also provide valuable reference for related practitioners

    Evanescent quadrupole polariton

    Full text link
    In the work we demonstrate the formation of new type of polariton on the interface between a cuprous oxide slab and a polystyrene micro-sphere placed on the slab. The evanescent field of the resonant whispering gallery mode (WGM) has a substantial gradient, and therefore effectively couples with the quadrupole 1S1S excitons in cuprous oxide. This evanescent polariton has a long life-time (1.7ns1.7 ns), which is determined only by its excitonic component. The polariton lower branch has a well pronounced minimum. This suggests that this excitation can be utilized for BEC. The spatial coherence of the polariton can be improved by assembling the micro-spheres in a linear chain.Comment: 4 pages, 3 figures; APS/PREPRIN

    Chromatin Laser Imaging Reveals Abnormal Nuclear Changes for Early Cancer Detection

    Full text link
    We developed and applied rapid scanning laser-emission microscopy to detect abnormal changes in cell nuclei for early diagnosis of cancer and cancer precursors. Regulation of chromatins is essential for genetic development and normal cell functions, while abnormal nuclear changes may lead to many diseases, in particular, cancer. The capability to detect abnormal changes in apparently normal tissues at a stage earlier than tumor development is critical for cancer prevention. Here we report using LEM to analyze colonic tissues from mice at-risk for colon cancer by detecting prepolyp nuclear abnormality. By imaging the lasing emissions from chromatins, we discovered that, despite the absence of observable lesions, polyps, or tumors under stereoscope, high-fat mice exhibited significantly lower lasing thresholds than low-fat mice. The low lasing threshold is, in fact, very similar to that of adenomas and is caused by abnormal cell proliferation and chromatin deregulation that can potentially lead to cancer. Our findings suggest that conventional methods, such as colonoscopy, may be insufficient to reveal hidden or early tumors under development. We envision that this work will provide new insights into LEM for early tumor detection in clinical diagnosis and fundamental biological and biomedical research of chromatin changes at the biomolecular level of cancer development

    Effect of blocking Ras signaling pathway with K-Ras siRNA on apoptosis in esophageal squamous carcinoma cells

    Get PDF
    AbstractObjectiveTo study the effect of RNAi silencing of the K-Ras gene on Ras signal pathway activity in EC9706 esophageal cancer cells.MethodsEC9706 cells were treated in the following six groups: blank group (no transfection), negative control group (transfection no-carrier), transfection group (transfected with pSilencer-siK-ras), taxol chemotherapy group, taxol chemotherapy plus no-carrier group, taxol chemotherapy plus transfection group. Immunocytochemistry, Reverse transcription-polymerase chain reaction and western blotting were used to analyze the expression of MAPK1 (mitogen-activated protein kinases 1) and cyclin D1 in response to siRNA (small interfering RNA) transfection and taxol treatment.ResultsK-Ras (K-Ras gene) siRNA transfection of EC9706 esophageal squamous carcinoma cells decreased the expression of K-Ras, MAPK1 and cyclin D1 at the mRNA and protein level. Reverse transcription-polymerase chain reaction indicated that the expression levels of MAPK1 and cyclin D1 mRNAs were significantly lower in the transfection group than in the blank group (P<0.05). Western blotting showed that 72 h after EC9706 cell transfection, the expression levels of MAPK1 and cyclin D1 proteins had decreased in all groups, and the expression levels in the transfection group were significantly inhibited as compared with the blank group. Apoptosis increased significantly in the transfection group or after addition of taxol as compared with the blank group and the no-carrier group. The degree of apoptosis in the taxol plus transfection group was more severe.ConclusionApoptosis increased significantly in EC9706 esophageal carcinoma cells after siRNA-mediated inhibition of Ras signaling, with the most obvious increase observed in the transfection plus taxol chemotherapy group. Ras knockdown therefore increased cellular sensitivity to the chemotherapeutic agent, taxol. Ras knockdown also down-regulated the expression of the downstream genes, MAPK1 and cyclin D1, thus inhibiting the growth, proliferation and metabolism of esophageal cancer cells
    corecore