81 research outputs found

    Research on dynamics of sorting arms with high frequency reciprocating motion

    Get PDF
    The characters of high frequency reciprocating equipment are quick starting and stopping, short range, high frequency and multi-freedom reciprocating motion. The inertia introduced by the high frequency reciprocating motion of a LED chip sorter has complicated effects on the positional accuracy. It is necessary to obtain dynamics of the sorting arm to suppress the vibration of the high frequency operation. The positioning precision and positioning time are affected by the natural vibration of the sorting arm by analyzing the displacement response. The paper verifies that the inherent vibration of the sorting arm has a crucial effect on its positioning precision and positioning time. Under static condition, due to the additional mass of the accelerometers, the research results show that there is no obvious difference in the experimental modal analysis (EMA) based on multi-type sensors. The modal parameters identified by accelerometers and strain gauges are very close. The modal parameters are obtained through the modal analysis method, which combines the strain modal analysis and operational modal analysis (OMA), under high frequency reciprocating motion. The paper verifies that the modal parameters of lightweight structure are very different in the static and operation. The key points of each mode are found by analyzing the modal amplitudes at different speeds which provide the guiding principle and basis for the dynamic optimization of the sorting arm mechanism

    Research on vibration suppression mode of sorting arm structure in high-frequency reciprocating motion

    Get PDF
    The sorting arm structure is under the inertia impact of high frequency reciprocating motion. The vibration characteristics are related to the operation process so that the precision of the chip sorting is uncertain. Thus, the accuracy of chips and efficiency of LED sorting machine are reduced. In the paper, the relationship between the vibration of the sorting arm and the positioning error of the chip has been studied. Besides, the correlation between the sorting arm structure’s vibration and the working precision of the separator are pointed out. The operation control is optimized based on the dynamics of the sorting arm and the operation parameters are optimized based on time sequence setting, in order to shorten the vibration attenuation time of the sorting arm for suppress vibration and provide efficiency. The incentives, which are introduced by variable structure and by the operation, can be effectively controlled. The array accuracy of chips and working efficiency of chip sorting machine are improved

    Perceptual Grouping without Awareness: Superiority of Kanizsa Triangle in Breaking Interocular Suppression

    Get PDF
    Much information could be processed unconsciously. However, there is no direct evidence on whether perceptual grouping could occur without awareness. To answer this question, we investigated whether a Kanizsa triangle (an example of perceptual grouping) is processed differently from stimuli with the same local components but are ungrouped or weakly grouped. Specifically, using a suppression time paradigm we tested whether a Kanizsa triangle would emerge from interocular continuous flash suppression sooner than control stimuli. Results show a significant advantage of the Kanizsa triangle: the Kanizsa triangle emerged from suppression noise significantly faster than the control stimulus with the local Pacmen randomly rotated (t(9)β€Š=β€Šβˆ’2.78, pβ€Š=β€Š0.02); and also faster than the control stimulus with all Pacmen rotated 180Β° (t(11)β€Š=β€Šβˆ’3.20, p<0.01). Additional results demonstrated that the advantage of the grouped Kanizsa triangle could not be accounted for by the faster detection speed at the conscious level for the Kanizsa figures on a dynamic noise background. Our results indicate that certain properties supporting perceptual grouping could be processed in the absence of awareness

    Robust and Task-Independent Spatial Profile of the Visual Word Form Activation in Fusiform Cortex

    Get PDF
    Written language represents a special category of visual information. There is strong evidence for the existence of a cortical region in ventral occipitotemporal cortex for processing the visual form of written words. However, due to inconsistent findings obtained with different tasks, the level of specialization and selectivity of this so called visual word form area (VWFA) remains debated. In this study, we examined category selectivity for Chinese characters, a non-alphabetic script, in native Chinese readers. In contrast to traditional approaches of examining response levels in a restricted predefined region of interest (ROI), a detailed distribution of the BOLD signal across the mid-fusiform cortical surface and the spatial patterns of responses to Chinese characters were obtained. Results show that a region tuned for Chinese characters could be consistently found in the lateral part of the left fusiform gyrus in Chinese readers, and this spatial pattern of selectivity for written words was not influenced by top-down tasks such as phonological or semantic modulations. These results provide strong support for the robust spatial coding of category selective response in the mid-fusiform cortex, and demonstrate the utility of the spatial distribution analysis as a more meaningful approach to examine functional magnetic resonance imaging (fMRI) data

    Chinese and Korean Characters Engage the Same Visual Word Form Area in Proficient Early Chinese-Korean Bilinguals

    Get PDF
    A number of recent studies consistently show an area, known as the visual word form area (VWFA), in the left fusiform gyrus that is selectively responsive for visual words in alphabetic scripts as well as in logographic scripts, such as Chinese characters. However, given the large difference between Chinese characters and alphabetic scripts in terms of their orthographic rules, it is not clear at a fine spatial scale, whether Chinese characters engage the same VWFA in the occipito-temporal cortex as alphabetic scripts. We specifically compared Chinese with Korean script, with Korean script serving as a good example of alphabetic writing system, but matched to Chinese in the overall square shape. Sixteen proficient early Chinese-Korean bilinguals took part in the fMRI experiment. Four types of stimuli (Chinese characters, Korean characters, line drawings and unfamiliar Chinese faces) were presented in a block-design paradigm. By contrasting characters (Chinese or Korean) to faces, presumed VWFAs could be identified for both Chinese and Korean characters in the left occipito-temporal sulcus in each subject. The location of peak response point in these two VWFAs were essentially the same. Further analysis revealed a substantial overlap between the VWFA identified for Chinese and that for Korean. At the group level, there was no significant difference in amplitude of response to Chinese and Korean characters. Spatial patterns of response to Chinese and Korean are similar. In addition to confirming that there is an area in the left occipito-temporal cortex that selectively responds to scripts in both Korean and Chinese in early Chinese-Korean bilinguals, our results show that these two scripts engage essentially the same VWFA, even at the level of fine spatial patterns of activation across voxels. These results suggest that similar populations of neurons are engaged in processing the different scripts within the same VWFA in early bilinguals

    Functional Foveal Splitting: Evidence from Neuropsychological and Multimodal MRI Investigations in a Chinese Patient with a Splenium Lesion

    Get PDF
    It remains controversial and hotly debated whether foveal information is double-projected to both hemispheres or split at the midline between the two hemispheres. We investigated this issue in a unique patient with lesions in the splenium of the corpus callosum and the left medial occipitotemporal region, through a series of neuropsychological tests and multimodal MRI scans. Behavioral experiments showed that (1) the patient had difficulties in reading simple and compound Chinese characters when they were presented in the foveal but left to the fixation, (2) he failed to recognize the left component of compound characters when the compound characters were presented in the central foveal field, (3) his judgments of the gender of centrally presented chimeric faces were exclusively based on the left half-face and he was unaware that the faces were chimeric. Functional MRI data showed that Chinese characters, only when presented in the right foveal field but not in the left foveal field, activated a region in the left occipitotemporal sulcus in the mid-fusiform, which is recognized as visual word form area. Together with existing evidence in the literature, results of the current study suggest that the representation of foveal stimuli is functionally split at object processing levels

    Localization and Functional Characterization of an Occipital Visual Word form Sensitive Area

    No full text
    In human occipitotemporal cortex, category-specific processing for visual objects seems to involve pairs of cortical regions, often with one located in the occipital cortex and another more anteriorly. We investigated whether such an arrangement might be the case for visual word processing. In addition to the Visual Word Form Area (VWFA) located in the occipitotemporal sulcus, we observed that another region in occipital lobe with robust responses to written words (Chinese characters). The current fMRI study investigated this area&#39;s precise location and its functional selectivity using Chinese characters and other categories of visual images (cars, chairs and insects). In all the 13 subjects we could identify a cluster of voxels near the inferior occipital gyrus or middle occipital gyrus with stronger responses to Chinese characters than scrambled objects. We tentatively label this area as the Occipital Word Form Sensitive Area (OWA). The OWA&#39;s response amplitudes showed similar preference to written words as the VWFA, with the VWFA showing a higher degree of word selectivity, which was confirmed by the result from spatial patterns of response. These results indicate that the OWA, together with the VWFA, are critical parts of the network for processing and representing the category information for word.</p

    Development of neural specialization for print: Evidence for predictive coding in visual word recognition.

    No full text
    How a child's brain develops specialization for print is poorly understood. One longstanding account is selective neuronal tuning to regularity of visual-orthographic features, which predicts a monotonically increased neural activation for inputs with higher regularity during development. However, we observed a robust interaction between a stimulus' orthographic regularity (bottom-up input) and children's lexical classification ability (top-down prediction): N1 response, which is the first negative component of the event-related potential (ERP) occurring at posterior electrodes, was stronger to lower-regularity stimuli, but only in children who were less efficient in lexically classifying these stimuli (high prediction error). In contrast, N1 responses were reduced to lower-regularity stimuli in children who showed high efficiency of lexical classification (low prediction error). The modulation of children's lexical classification efficiency on their neural responses to orthographic stimuli supports the predictive coding account of neural processes of reading
    • …
    corecore