4 research outputs found

    Propargylic Dialkyl Effect for Cyclobutene Formation through Ir(III)-Catalyzed Cycloisomerization of 1,6-Enynes

    No full text
    The propargylic dialkyl effect (PDAE) has a significant impact on the cyclization reaction of enynes, partly reflected in changing the types of products. Herein, we described the influence of the propargylic dialkyl effect on the Ir(III)-catalyzed cycloisomerization of 1,6-enynes to provide strained cyclobutenes. A series of substituted 1,6-enynes were proved to be excellent substrate candidates in the presence of [Cp*IrCl2]2 in toluene. Mechanistic investigation, based on deuterium labeling experiments and control experiments, indicated that the propargylic dialkyl effect might boost C(sp)-H activation by preventing the coordination of active iridium species to the C(sp)C(sp) bond of enynes. This finding contributes to the fundamental understanding of enyne cyclization reactions and offers valuable insight into the propargylic dialkyl effect

    Enhanced Davydov Splitting in Crystals of a Perylene Diimide Derivative

    No full text
    We report the polarized absorption spectra of high-quality, thin crystals of a perylene diimide (PDI) species with branched side chains (<b>B2</b>). The absorption spectrum shows exemplary polarization-dependent H-like and J-like aggregate behavior upon orthogonal excitation, with a sizable Davydov splitting (DS) of 1230 cm<sup>–1</sup> and peak to peak splitting of 3040 cm<sup>–1</sup>. The experimental results are compared to theoretical calculations with remarkable agreement. The theoretical analysis of the polarized absorption spectra shows evidence of a high degree of intermolecular charge transfer, which, along with Coulombic coupling, conspires to create the unprecedented DS for this family of dye molecules. The large polarization dependence of the electronic spectra is attributed to the unique twisted crystal structure, in which a substantial rotational displacement exists between neighboring chromophores within a π-stack. These results highlight the strong sensitivity of the Davydov splitting to intermolecular geometry in PDI systems

    Multimode-Responsive Luminescence of Er<sup>3+</sup> Single-Activated CaF<sub>2</sub> Phosphor for Advanced Information Encryption

    No full text
    The current optical anticounterfeit strategies that rely on multimode luminescence in response to the photon or thermal stimuli have significant importance in the field of anticounterfeiting and information encryption. However, the dependence on light and heat sources might limit their flexibility in practical applications. In this work, Er3+ single-doped CaF2 phosphors that show multistimuli-responsive luminescence have been successfully prepared. The as-obtained CaF2:Er3+ phosphor exhibits green photoluminescence (PL) and color-tunable up-conversation (UC) luminescence from red to green due to the cross-relaxation of Er3+ ions. Additionally, as-obtained CaF2:Er3+ phosphors also display green mechano-luminescence behavior, which is induced by the contact electrification between the CaF2 particles and PDMS polymers, enabling the phosphor to flexibly respond to mechanical stimuli. Moreover, feasible anticounterfeiting schemes with the capability of multistimuli-responsive and flexible decryption have been constructed, further expanding the application of optical materials in the field of advanced anticounterfeiting and information encryption

    Enhanced Storage Capacity via Anion Substitution for Advanced Delayed X‑ray Detection

    No full text
    X-ray radiation information storage, characterized by its ability to detect radiation with delayed readings, shows great promise in enabling reliable and readily accessible X-ray imaging and dosimetry in situations where conventional detectors may not be feasible. However, the lack of specific strategies to enhance the memory capability dramatically hampers its further development. Here, we present an effective anion substitution strategy to enhance the storage capability of NaLuF4:Tb3+ nanocrystals attributed to the increased concentration of trapping centers under X-ray irradiation. The stored radiation information can be read out as optical brightness via thermal, 980 nm laser, or mechanical stimulation, avoiding real-time measurement under ionizing radiation. Moreover, the radiation information can be maintained for more than 13 days, and the imaging resolution reaches 14.3 lp mm–1. These results demonstrate that anion substitution methods can effectively achieve high storage capability and broaden the application scope of X-ray information storage
    corecore