2,866 research outputs found
Study on the influence of bus suspension parameters on ride comfort
This study proposes a three-dimensional vibration model of bus with 10 DOF (degree of freedom) based on Dragan Sekulić model to analyze the suspension parameters directly influenced ride comfort. The suspension parameters which include the stiffness and damping parameters are analyzed based on the weighted r.m.s. (root-mean-square) acceleration responses of the space of a driver, passenger in the middle part of the bus and passenger in the rear overhang according to ISO 2631-1:1997. The results show that both stiffness and damping parameters of vehicle suspension have important influences on ride comfort. Especially, the stiffness and damping values of vehicle suspension are within the value ranges (0.5k0 ≤ k ≤ 0.75 k0) and (0.5c0 ≤ c ≤ 0.75c0) to improve the ride comfort of driver and passengers
On a viscoelastic heat equation with logarithmic nonlinearity
This work deals with the following viscoelastic heat equations with logarithmic nonlinearity ut − ∆u + Z t 0 g(t − s)∆u(s)ds = |u| p−2u ln |u|. In this paper, we show the effects of the viscoelastic term and the logarithmic nonlinearity to the asymptotic behavior of weak solutions. Our results extend the results of Peng and Zhou [Appl. Anal. 100(2021), 2804–2824] and Messaoudi [Progr. Nonlinear Differential Equations Appl. 64(2005), 351–356.]
Mapping impervious surface change from remote sensing and GIS data: A case study in Hochiminh city, Vietnam
Impervious surface is artificial surfaces that prevent water from entering the soil. The increase in impervious surface area has led to negative impacts on the urban environment, including an increase in the risk of flooding, a decrease in vegetation cover, and the formation of urban heat islands. This paper presents the results of building a predictive model of impervious surfaces in Hochiminh city from remote sensing and GIS data. Landsat and Sentinel 2 satellite images for the period 2002–2022 are used to classify impervious surfaces and extract input layers about vegetation cover, land surface temperature, combined with GIS data (elevation, slope, aspect, distance to road, distance to hydrology, population density) for modeling and predicting impervious surface changes in future. 03 machine learning algorithms, including Support Vector Machine (SVM), Random Forest (RF), Classification and Regression Trees (CART) and maximum likelihood method are used to classify impervious surfaces from Landsat satellite images, then select the method with the highest accuracy. To predict the future distribution of impervious surface, this study uses Cellular Automata (CA) model and 02 artificial intelligence algorithms (Artificial Neural Network - ANN, Logistic Regression - LR). The results obtained in the study can be effectively used for urban planning, minimizing the impact of the process of increasing the impervious surface on the urban environmen
Optimization of Rough Self-Propelled Rotary Turning Parameters in terms of Total Energy Consumption and Surface Roughness
The self-propelled rotary tool turning (SPRT) process is an economic and effective solution for machining difficult-to-cut materials. This work optimized SPRT parameters, including the inclination angle (A), depth of cut (D), feed rate (f), and turning speed (V) to decrease the total energy consumption (TE) and surface roughness (SR). The turning experiments of the hardened AISI 4150 steel were executed to obtain the experimental data, while the regression method was applied to develop the TE and SR correlations. The entropy method and quantum-behaved particle swarm optimization (QPSO) were utilized to select the weights and optimal factors. The results indicated that the optimal A, D, f, and V were 34 deg., 0.40 mm, 0.47 mm/rev., and 177 m/min, respectively, while the TE and SR were saved by 9.7% and 35.4%, respectively. The f and V were found to be the most effective parameters, followed by the D and A. The outcomes provide valuable data to determine optimal SPRT factors for minimizing energy consumption and maximizing machining quality.The optimizing technique could be applied to solve other issues for different SPRT operations
Measurement Profile of Surface Revolution by Laser Scan Micrometer Method
Measurement profile of surface revolution by laser scan micrometer method is a non-contact measurement method that allows de-tailed profile measurements with fast measuring speed by using laser scanning and accuracy is much higher than other non-contact scanning methods. This paper presents the mathematical model profile of surface revolution and the application of the laser scan micrometer method for measuring this detailed profile. Fabricating complete equipment model according to the author's proposed method. Compare the results of measuring the profile of surface revolution on a construction measuring device with a roundness meter Jenoptik F315 to prove the feasibility of the construction measurement method
Multi-Response Optimization of the Flat Burnishing Process with a High-Stiffness Tool in terms of Surface Characteristics
In this work, the surface roughness (SR), surface hardness (SH), and the thickness of the affected layer (TL) of the multi-roller flat burnishing process are optimized.The parameter inputs are the tool rotational speed (S), burnishing depth (D), and feed rate (f). The flat burnishing tool having three rollers was utilized to facilitate burnishing trials. The Kriging models of performances are proposed regarding inputs.The CRITIC method and Crow Search Algorithm (CSA) were employed to select weights and optimality. The optimizing outcomes indicated that the optimal values of the S, f, and D were 912 rpm, 150 mm/min, and 0.12 mm, respectively. The improvements in the SR, SH, and TL were 33.3%, 26.9%, and 48.6%, respectively. The SR was primarily influenced by the f, followed by the D and S, respectively. The SH and TL were primarily influenced by the D, followed by the S and f, respectively. The optimal data could be applied to the practical multi-roller burnishing process to improve surface properties for flat surfaces. The Kriging models and CSA could be efficiently utilized to solve complex issues for burnishing operations and other machining processes
Double-Curvature Test of Reinforced Concrete Columns Using Shaking Table: A New Test Setup
This paper proposes a new test setup to study the double-curvature behavior of reinforced concrete (RC) columns using shaking table. In this setup, the seismic action is simulated by the horizontal movement of a long-heavy rigid mass sitting on the top of only one test specimen. The double-curvature mechanism of specimen is affected by the movement of the concrete mass on a test rig consisting four steel hollow-section columns fully anchored to the shaking table. Application of axial load on the specimen is made possible through a pre-stressing equipment connecting to its top and bottom bases. The current setup offers two improvements over the previous ones. First, it makes available greater ranges of test data for conducting bigger sizes of the specimens. Second, it allows to directly measure the variation of axial force in the test specimens while the test implementation can be fast and easy with a high safety margin even until the complete collapse of the test units. The current test setup has been successfully applied on two ½ scaled V-shaped columns. It has been shown that the column specimen with a low axial load level of 0.05f’cAg, where f’c is the concrete strength and Ag is the cross-sectional area of the specimen, can well survive at a ground peak acceleration up to 5.5 (m/s2) with a drift ratio of approximately 2.91%. Meanwhile, the column subjected to moderate axial load level of 0.15f’cAg can survive at a higher ground peak acceleration of 8.0 (m/s2) with a drift ratio of 3.75%. Furthermore, it is experimentally evidenced that the V-shaped cross-section does not deform in-plane under seismic action. The angle between two planes corresponding to the column web and flange are up to 0.03 (rad). This finding is significant since it contradicts the plane strain assumption available in the current design practice
- …