6,034 research outputs found
Spin dynamics of electrons in the first excited subband of a high-mobility low-density 2D electron system
We report on time-resolved Kerr rotation measurements of spin coherence of
electrons in the first excited subband of a high-mobility low-density
two-dimensional electron system in a GaAs/Al0.35Ga0.65As heterostructure. While
the transverse spin lifetime (T2*) of electrons decreases monotonically with
increasing magnetic field, it has a non-monotonic dependence on the
temperature, with a peak value of 596 ps at 36 K, indicating the effect of
inter-subband electron-electron scattering on the electron spin relaxation. The
spin lifetime may be long enough for potential device application with
electrons in excited subbands
Path Coordination Planning and Control in Robotic Material Handling and Processing
This chapter presents a unified approach to coordination planning and control for robotic position and orientation trajectories in Cartesian space and its applications in robotic material handling and processing. The unified treatment of the end-effector positions and orientations is based on the robot pose ruled surface concept and used in trajectory interpolations. The focus of this chapter is on the determination and control of the instantaneous change laws of position and orientation, i.e., the generation and control of trajectories with good kinematics and dynamics performances along such trajectories. The coordination planning and control is implemented through controlling the motion laws of two end points of the orientation vector and calculating the coordinates of instantaneous corresponding points. The simulation and experiment in robotic surface profiling/finishing processes are presented to verify the feasibility of the proposed approach and demonstrate the capabilities of planning and control models. Keywords: Robot pose ruled surface, Unified approach, Trajectory planning and control, Off-line programming, Robotics polishin
Molecular dynamics of folding of secondary structures in Go-type models of proteins
We consider six different secondary structures of proteins and construct two
types of Go-type off-lattice models: with the steric constraints and without.
The basic aminoacid-aminoacid potential is Lennard Jones for the native
contacts and a soft repulsion for the non-native contacts. The interactions are
chosen to make the target secondary structure be the native state of the
system. We provide a thorough equilibrium and kinetic characterization of the
sequences through the molecular dynamics simulations with the Langevin noise.
Models with the steric constraints are found to be better folders and to be
more stable, especially in the case of the -structures. Phononic spectra
for vibrations around the native states have low frequency gaps that correlate
with the thermodynamic stability. Folding of the secondary structures proceeds
through a well defined sequence of events. For instance, -helices fold
from the ends first. The closer to the native state, the faster establishment
of the contacts. Increasing the system size deteriorates the folding
characteristics. We study the folding times as a function of viscous friction
and find a regime of moderate friction with the linear dependence. We also
consider folding when one end of a structure is pinned which imitates
instantaneous conditions when a protein is being synthesized. We find that,
under such circumstances, folding of helices is faster and of the
-sequences slower.Comment: REVTeX, 14 pages, EPS figures included, JCP in pres
Well-posedness and scattering for wave equations on hyperbolic spaces with singular data
We consider the wave and Klein-Gordon equations on the real hyperbolic space
() in a framework based on weak- spaces.
First, we establish dispersive estimates on Lorentz spaces in the context of
. Then, employing those estimates, we prove global
well-posedness of solutions and an exponential asymptotic stability property.
Moreover, we develop a scattering theory in such singular framework.Comment: 15 page
- …