2 research outputs found

    Computational Investigations of the Interaction between the Cell Membrane and Nanoparticles Coated with a Pulmonary Surfactant

    No full text
    When inhaled nanoparticles (NPs) come into the deep lung, they develop a biomolecular corona by interacting with the pulmonary surfactant. The adsorption of the phospholipids and proteins gives a new biological identity to the NPs, which may alter their subsequent interactions with cells and other biological entities. Investigations of the interaction between the cell membrane and NPs coated with such a biomolecular corona are important in understanding the role of the biofluids on cellular uptake and estimating the dosing capacity and the nanotoxicology of NPs. In this paper, using dissipative particle dynamics, we investigate how the physicochemical properties of the coating pulmonary surfactant lipids and proteins affect the membrane response for inhaled NPs. We pinpoint several key factors in the endocytosis of lipid NPs, including the deformation of the coating lipids, coating lipid density, and ligand–receptor binding strength. Further studies reveal that the deformation of the coating lipids consumes energy but on the other hand promotes the coating ligands to bind with receptors more tightly. The coating lipid density controls the amount of the ligands as well as the hydrophobicity of the lipid NPs, thus affecting the endocytosis kinetics through the specific and nonspecific interactions. It is also found that the hydrophobic surfactant proteins associated with lipids can accelerate the endocytosis process of the NPs, but the endocytosis efficiency mainly depends on the density of the coating surfactant lipids. These findings can help understand how the pulmonary surfactant alters the biocompatibility of the inhaled NPs and provide some guidelines in designing an NP complex for efficient pulmonary drug delivery

    Unveiling the Molecular Structure of Pulmonary Surfactant Corona on Nanoparticles

    No full text
    The growing risk of human exposure to airborne nanoparticles (NPs) causes a general concern on the biosafety of nanotechnology. Inhaled NPs can deposit in the deep lung at which they interact with the pulmonary surfactant (PS). Despite the increasing study of nano-bio interactions, detailed molecular mechanisms by which inhaled NPs interact with the natural PS system remain unclear. Using coarse-grained molecular dynamics simulation, we studied the interaction between NPs and the PS system in the alveolar fluid. It was found that regardless of different physicochemical properties, upon contacting the PS, both silver and polystyrene NPs are immediately coated with a biomolecular corona that consists of both lipids and proteins. Structure and molecular conformation of the PS corona depend on the hydrophobicity of the pristine NPs. Quantitative analysis revealed that lipid composition of the corona formed on different NPs is relatively conserved and is similar to that of the bulk phase PS. However, relative abundance of the surfactant-associated proteins, SP-A, SP-B, and SP-C, is notably affected by the hydrophobicity of the NP. The PS corona provides the NPs with a physicochemical barrier against the environment, equalizes the hydrophobicity of the pristine NPs, and may enhance biorecognition of the NPs. These modifications in physicochemical properties may play a crucial role in affecting the biological identity of the NPs and hence alter their subsequent interactions with cells and other biological entities. Our results suggest that all studies of inhalation nanotoxicology or NP-based pulmonary drug delivery should consider the influence of the PS corona
    corecore